Компьютерные и телекоммуникационные сети. Телекоммуникационные технологии Компьютерные сети интернет и телекоммуникации

Транскрипт

1 Компьютерные сети и телекоммуникации. Лекция 1 1 ВВЕДЕНИЕ Учебная дисциплина «Компьютерные сети и телекоммуникации» является специальной, дающей базовые знания для освоения общепрофессиональных и специальных дисциплин специальности Вычислительные машины, комплексы, системы и сети. Предмет дисциплины - теоретические и практические основы в области компьютерных сетей и телекоммуникаций. Дисциплина «Компьютерные сети и телекоммуникации» базируется на материалах ранее изученных дисциплин: «Информационные технологии», «Электронная техника», «Цифровая схемотехника», «Математические и логические основы электронновычислительной техники»; имеет межпредметные связи с дисциплинами «Операционные системы и среды», «Конструирование, производство и эксплуатация средств вычислительной техники», «Метрология, стандартизация и сертификация». Цель изучения дисциплины «Компьютерные сети и телекоммуникации» дать студентам систематизированные сведения о принципах организации компьютерных сетей различного назначения, о методах проектирования и эксплуатации. В самом начале изучения дисциплины «Компьютерные сети и телекоммуникации» студенты должны усвоить понятие компьютерной сети, ее назначение и преимущества по сравнению с автономно работающими компьютерами. В процессе изучения дисциплины студентами осваиваются основные принципы построения сети; выбора коммуникационного оборудования, средств передачи, методов доступа; эксплуатации. Логическая структура курса с выделением основных тематических разделов представлена в таблице. Номер раздела Название раздела Номер лекции 1 Основные понятия компьютерных сетей 1 2 Локальные компьютерные сети 2 3 Глобальные компьютерные сети 3 4 Пакетная передача и методы управления обменом 4 5 Способы и среды передачи данных Эталонная модель OSI, проблемы стандартизации и протоколы 7 7 Средства построения объединенных сетей Базовые технологии локальных сетей 10-12

2 Компьютерные сети и телекоммуникации. Лекция 1 2 Как видно из структуры, изучение курса основывается на последовательном изучении восьми тематических разделов. Каждый раздел включает одну или несколько лекций. В соответствии с логической структурой курса перейдем к изучению первого раздела и первой лекции. ТЕМА ЛЕКЦИИ 1: «ОСНОВНЫЕ ПОНЯТИЯ КОМПЬЮТЕРНЫХ СЕТЕЙ» Целями лекции являются: изучить основные понятия компьютерных сетей и телекоммуникаций; рассмотреть преимущества и недостатки компьютерных сетей по сравнению с автономно работающими компьютерами; изучить различные классификации компьютерных сетей. План лекции: 1. Определение и назначение компьютерной сети 2. Преимущества и недостатки компьютерных сетей 3. Классификации компьютерных сетей 4. Многослойная модель 1. Определение и назначение компьютерной сети Первые вычислительные сети появились в 60-х годах прошлого века. Цель их создания объединение технологий сбора, хранения, обработки и передачи информации с технологией связи. Таким образом, развитие компьютерных телекоммуникаций началось задолго до Internet (в ее нынешнем виде) и задолго до появления Windows. Например, в 80-х годах во всем мире появились общедоступные файловые серверы BBS (электронная доска объявлений), работавшие в среде MS-DOS. Абоненты BBS получили возможность бесплатно просматривать и размещать объявления, обмениваться почтовыми сообщениями и файлами, участвовать в дискуссиях (форумах) и т. п. Компьютерные сети стали логическим результатом эволюции компьютерных и телекоммуникационных технологий. За счет объединения компьютеров в сеть существенно повышается эффективность обработки данных, т.к. отпадает необходимость в промежуточных носителях данных и повышается оперативность взаимодействия с ЭВМ. В настоящее время персональные компьютеры в автономном режиме практически не используются, их, как правило, объединяют в вычислительные или компьютерные сети.

3 Компьютерные сети и телекоммуникации. Лекция 1 3 Компьютерная сеть это совокупность компьютеров и различных устройств, обеспечивающих информационный обмен между компьютерами в сети, соединенных линиями связи. Можно привести множество примеров, когда объединение компьютеров в сеть просто необходимо: продажа авиационных и железнодорожных билетов; банковская сеть; компьютерный клуб. Существуют и другие возможные названия компьютерной сети: компьютерная телекоммуникационная сеть, компьютерная вычислительная сеть. Основное назначение компьютерных сетей - обеспечение доступа к распределенным ресурсам. Рассмотрим еще несколько определений, связанных с понятием компьютерной сети. Телекоммуникация в широком смысле слова это общение между субъектами (людьми, приборами, компьютерами), находящимися на таком удалении друг от друга, которое исключает непосредственный контакт («теле» удаленный, «коммуникация» связь, общение). Пример. Телекоммуникации в широком смысле слова: обмен световыми сигналами на море между кораблями; телефон; телеграф; телевидение. Примеры словоупотребления: телекоммуникации больших городов; телекоммуникационное оборудование; телекоммуникационные службы. Компьютерная телекоммуникационная сеть это сеть обмена и распределенной обработки информации, образуемая множеством взаимосвязанных абонентских систем и средствами связи; средства передачи и обработки информации ориентированы в ней на коллективное использование общесетевых ресурсов аппаратных, информационных, программных. Пример. Сетевой принтер, информационная база данных, ОС. Абонентская система это совокупность ЭВМ, программного обеспечения, периферийного оборудования, средств связи, выполняющая прикладные процессы. К телекоммуникационным сетям относятся: 1. Компьютерные сети (для передачи данных)

4 Компьютерные сети и телекоммуникации. Лекция Телефонные сети (передача голосовой информации) 3. Радиосети (передача голосовой информации - широковещательные услуги) 4. Телевизионные сети (передача голоса и изображения - широковещательные услуги) 2. Преимущества и недостатки компьютерных сетей Рассмотрим преимущества и недостатки компьютерных сетей по сравнению с автономно работающими компьютерами. Объединение компьютеров в сеть имеет множество преимуществ. Среди них можно выделить следующие: совместное использование всех видов ресурсов: аппаратных, программных, информационных; экономия материальных средств при совместном использовании ресурсов; обеспечение распределенной обработки данных и параллельной обработки многими ЭВМ; возможность обмена большими массивами информации между ЭВМ, удаленными друг от друга на значительные расстояния; предоставление большего перечня услуг, в том числе таких, как электронная почта, телеконференции, электронные доски объявлений, Интернет-магазины, форумы, дистанционное обучение и многое другое; Существуют и другие преимущества компьютерных сетей: облегчение работ по совершенствованию технических, программных и информационных средств; относительная независимость в территориальном размещении компьютеров; оперативное и качественное принятие решений. Недостатки компьютерной сети: возможность распространения компьютерных вирусов; возможность несанкционированного доступа к информации; при использовании ресурсов глобальных сетей (например, Internet) возможность получения недостоверной или устаревшей информации. 3. Классификации компьютерных сетей Существуют различные классификации компьютерных сетей. Рассмотрим некоторые из них, выделяя признак классификации и виды сетей. Классификация 1 в зависимости от расстояния между узлами сети (по величине территории. По этому признаку выделяют три вида сетей: ЛВС, ГВС, РВС.

5 Компьютерные сети и телекоммуникации. Лекция 1 5 Локальная вычислительная сеть (ЛВС) (LAN Local Area Network) связывает абонентские системы, расположенные в пределах небольшой территории. Замечание. Следует отметить, что небольшая территория в данном определении очень относительное понятие. Протяженность ЛВС может ограничиваться как несколькими километрами, так и и десятками тысяч километров. К классу локальных сетей относятся сети предприятий, фирм, банков, офисов, учебных заведений и т. д. В общем случае ЛВС представляет собой коммуникационную систему, принадлежащую одной организации. Глобальная вычислительная сеть (ГВС) (WAN Wide Area Network) объединяет абонентские системы, рассредоточенные на большой территории, охватывающей различные страны и континенты. Глобальные сети решают проблему объединения информационных ресурсов всего человечества и организации доступа к ним. Взаимодействие AC осуществляется на базе различных территориальных сетей связи, в которых используются телефонные линии связи, радиосвязь, системы спутниковой связи. Примером глобальной сети является сеть Интернет. Региональная вычислительная сеть (РВС), или сеть мегаполисов (MAN Metropolitan Area Network), объединяет абонентские системы, расположенные друг от друга на значительном расстоянии: в пределах отдельной страны, региона, большого города. Замечание. Региональные вычислительные сети в пределах города часто называют городскими. РВС ограничены некоторой административной единицей. Протяженность РВС различная: от десятков километров до сотен тысяч километров. Каналы связи РВС беспроводные и проводные линии. В то время как локальные сети наилучшим образом подходят для разделения ресурсов на коротких расстояниях и широковещательных передач, а глобальные сети обеспечивают работу на больших расстояниях, но с ограниченной скоростью и богатым набором услуг, сети мегаполисов занимают некоторое промежуточное положение. Интересным примером связи локальных и глобальных сетей является виртуальная частная сеть (Virtual Private Network, VPN).

6 Компьютерные сети и телекоммуникации. Лекция 1 6 Так называется сеть организации, получающаяся в результате объединения двух или нескольких территориально разделенных ЛВС с помощью общедоступных каналов глобальных сетей, например, через Интернет. Объединение глобальных, региональных и локальных вычислительных сетей позволяет создавать многоуровневые иерархии, которые предоставляют мощные средства для обработки огромных массивов данных и доступ к практически неограниченным информационным ресурсам. Локальные вычислительные сети (ЛВС) могут входить в качестве компонентов в состав региональной сети; региональные сети объединяться в составе глобальной сети; наконец, глобальные сети могут образовывать еще более крупные структуры. Самым большим объединением компьютерных сетей в масштабах планеты Земля на сегодня является «сеть сетей» Интернет. Классификация 2 по способу управления. По этому признаку выделяют следующие виды: сетей с централизованным управлением (выделенным сервером); с децентрализованным управлением (одноранговая сеть); со смешанным управлением. Сеть с централизованным управлением (многоуровневая или иерархическая) это сеть с выделенным сервером В такой сети один из компьютеров выполняет функции управления работой сети: хранение данных, предназначенных для использования всеми рабочими станциями; управление взаимодействием между рабочими станциями; другие сервисные функции (администрирование, управление аппаратными устройствами и др.). Одноранговая сеть (одноуровневая, или сеть с децентрализованным управлением) это сеть, в которой все компьютеры равноправны. Классификация 3 по организации передачи информации. Сети с селекцией информации: строятся на основе моноканала (единого канала связи, объединяющего все компьютеры сети). Взаимодействие абонентов производится выбором (селекцией) адресованных им блоков данных (кадров): всем абонентам сети доступны все передаваемые в сети кадры, но копию кадра снимают только абонентские системы, которым они предназначены. Сети с маршрутизацией информации: в таких сетях для передачи кадров от отправителя к получателю может использоваться несколько маршрутов. Поэтому с

7 Компьютерные сети и телекоммуникации. Лекция 1 7 помощью коммуникационных систем сети решается задача выбора оптимального маршрута. Классификация 4 по методу доступа. Конкурентные: абонент начинает передачу данных, если обнаруживает свободной линию, или откладывает передачу на некоторый промежуток времени, если сеть занята другим абонентом. Детерминированные: резервирование времени у каждого абонента есть определенный промежуток, в течение которого линия принадлежит только ему. Классификация 5 по типу организации передачи данных. Эта классификация характерна для сетей с маршрутизацией информации. По типу организации передачи данных выделяют следующие виды сетей: 1. С коммутацией цепей (каналов). 2. С коммутацией сообщений. 3. Сети коммутации информационных пакетов Сети коммутации цепей исторически более ранние. Коммутация каналов подразумевает образование сквозного канала связи для прямой передачи данных между узлами до начала передачи информации. Отдельные каналы соединяются между собой специальной аппаратурой коммутаторами, которые могут устанавливать связи между любыми конечными узлами сети. Перед передачей данных всегда необходимо выполнить процедуру установления соединения, в процессе которой и создается составной канал. Легкость такого способа предполагает ряд недостатков, и самый главный низкий коэффициент использования каналов (они должны быть включены одновременно, следовательно происходит увеличение времени ожидания других клиентов). Пример сети с коммутацией каналов: передача информации по телефону. В сети коммутации сообщений информация передаётся порциями, которые называются сообщениями. Передача данных осуществляется сразу же после освобождения самого первого из нужных каналов. При этом методе коммутации сообщение передается через несколько транзитных компьютеров, где оно целиком буферизуется на диске (хранится в памяти). Транзитный узел не может начинать дальнейшую передачу части сообщения, если оно еще принимается. Сообщение, в отличие от пакета, имеет произвольную длину. Каждым сервером осуществляются следующие операции: приём информации, её сборка, проверка, маршрутизация, передача сообщения. Пример: электронная почта, телеконференции;

8 Компьютерные сети и телекоммуникации. Лекция 1 8 В сети коммутации информационных пакетов передача данных осуществляется короткими пакетами фиксированной длины (перед началом передачи сообщение разбивается на пакеты). Каждый пакет снабжается протокольной информацией (коды начала и окончания пакета, адреса отправителя и получателя, номер пакета в сообщении, информация для контроля достоверности передаваемых данных в промежуточных узлах связи и в пункте назначения). До начала передачи информации сквозной канал между отправителем и получателем не устанавливается. Информационный пакет (ИП) часть сообщения, удовлетворяющая некоторому стандарту (пакет, обязательно содержащий поле данных). Преимущества коммутации информационных пакетов: малая длина пакета предотвращает блокировку линии связи и не дает расти очереди в коммутационных узлах, отсюда быстрое соединение, низкий уровень ошибок, надёжность и эффективность использования сети. Недостатки коммутации информационных пакетов: проблемы маршрутизации (решаются не только программным, но и аппаратным способом). Фиксированная маршрутизация предполагает наличие таблиц маршрутов, к которым закреплены маршруты от одного клиента к другому. Это обеспечивает достаточно простую реализацию, но загрузка сети может быть неравномерной. Здесь применяется метод кратчайшей очереди. Суть метода: каждый канал имеет приоритет, который определяется в соответствии с обратной пропорциональностью длины. Передача данных осуществляется по первому свободному каналу с наиболее высоким приоритетом. Таким образом, использование данного метода предполагает задержку ИП минимальной. Пример: передача информации в локальной сети Ethernet (Fast Ethernet, Gigabit Ethernet). Замечание. На практике существуют и интегрированные сети (комбинирование коммутаций). Классификация 6 по совместимости программ: однородные или гомогенные (это КС, которые объединяют программно-совместимые ЭВМ); неоднородные или гетерогенные (это КС, которые объединяют программнонесовместимые ЭВМ). Классификация 7 по топологии:

9 Компьютерные сети и телекоммуникации. Лекция 1 9 широковещательные (общая шина, пассивное дерево, пассивная звезда). В широковещательных конфигурациях в любой момент времени на передачу кадра может работать только одна РС, остальные РС могут принимать этот кадр (сети с селекцией информации); последовательные (произвольная или ячеистая, кольцо, активная звезда, активное дерево, полносвязная). В последовательных конфигурациях, характерных для сетей с маршрутизацией информации, передача данных осуществляется последовательно от одной РС к соседней; Классификация 8 по масштабу производственного подразделения. сети отделов используются небольшой группой сотрудников, работающих в одном отделе предприятия; сети кампусов сети предприятий, организаций («сampus» студенческий городок) объединяют сети отделов в пределах отдельного здания или одной территории; корпоративные сети сети масштаба предприятия, объединяющие большое количество компьютеров на всех территориях данного предприятия. Классификация 9 по назначению. информационные (информационно-поисковые); управляющие (технологическими, административными, организационными и др. процессами); расчетные; обрабатывающие документальную информацию и др. Классификация 10 по типу среды передачи данных: Проводные; Беспроводные. Проводные: коаксиальные, на витой паре, оптоволоконные. Беспроводные: с передачей информации по радиоканалам с передачей информации в инфракрасном диапазоне Классификация 11 по скорости передачи данных: низкоскоростные среднескоростные высокоскоростные Пример. Низкоскоростные:

10 Компьютерные сети и телекоммуникации. Лекция 1 10 Token-Ring ArcNet Среднескоростные: Ethernet Высокоскоростные: Fast Ethernet, Gigabit Ethernet, 10 Gigabit Ethernet 4. Многослойная модель Таким образом, компьютерная сеть - это сложный комплекс взаимосвязанных и согласованно функционирующих программных и аппаратных компонентов. Изучение сети в целом предполагает знание принципов работы отдельных ее элементов, таких как: компьютеры; коммуникационное оборудование; операционные системы; сетевые приложения. Весь комплекс программно-аппаратных средств сети может быть описан многослойной моделью. В основе любой сети лежит аппаратный слой стандартизированных компьютерных платформ. В сетях успешно применяются компьютеры различных классов - от персональных компьютеров до мэйнфреймов и супер-эвм. Набор компьютеров в сети должен соответствовать набору решаемых сетью задач. Второй слой - это коммуникационное оборудование. Хотя компьютеры и являются центральными элементами обработки данных в сетях, не менее важную роль играют коммуникационные устройства. Кабельные системы, повторители, мосты, коммутаторы, маршрутизаторы и модульные концентраторы из вспомогательных компонентов сети превратились в основные наряду с компьютерами и системным программным обеспечением, как по влиянию на характеристики сети, так и по стоимости. Сегодня коммуникационное устройство может представлять собой сложный специализированный мультипроцессор, который нужно конфигурировать, оптимизировать и администрировать

11 Компьютерные сети и телекоммуникации. Лекция 1 11 Третьим слоем, образующим программную платформу сети, являются операционные системы (ОС). От того, какие концепции управления локальными и распределенными ресурсами положены в основу сетевой ОС, зависит эффективность работы всей сети. При проектировании сети важно учитывать, насколько легко данная операционная система может взаимодействовать с другими ОС сети, какой она обеспечивает уровень безопасности и защищенности данных, до какой степени позволяет наращивать число пользователей, можно ли перенести ее на компьютер другого типа и многие другие соображения. Самый верхний слой сетевых средств образуют различные сетевые приложения, такие как сетевые базы данных, почтовые системы, средства архивирования данных, системы автоматизации коллективной работы и т.д. Очень важно представлять диапазон возможностей, предоставляемых приложениями для различных областей применения, а также знать, насколько они совместимы с другими сетевыми приложениями и операционными системами.

12 Компьютерные сети и телекоммуникации. Лекция 1 12 Итак, в лекции 1 мы рассмотрели основные понятия компьютерных сетей и телекоммуникаций, преимущества и недостатки компьютерных сетей, различные классификации сетей. Для контроля и оценки полученных знаний по теме «Основные понятия компьютерных сетей» вам предлагается выполнить тест, который вы можете найти на сайте. Дополнительную информацию по изученной теме вы сможете найти в литературных источниках. Список рекомендуемой литературы 1. Бройдо В. Л., Ильина О. П. Вычислительные системы, сети и телекоммуникации: Учебник для вузов. 4-е изд. - СПб.: ПИТЕР, Мелехин, В.Ф. Вычислительные машины, системы и сети: учебник /В.Ф. Мелехин, Е.Г. Павловский. - 2-е изд., стер. - М.: Академия, Олифер В. Г., Олифер Н. А. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 4-е изд. - СПб.: ПИТЕР, Пескова, С.А. Сети и телекоммуникации: учеб. пособие /С.А. Пескова, А.В. Кузин, А.Н. Волков. - 2-е изд., стер. - М.: Академия, Таненбаум Э. С. Компьютерные сети. 4-е изд. - СПб.: ПИТЕР, 2011.


ТЕМА 3. ОСНОВНЫЕ СВЕДЕНИЯ О КОМПЬЮТЕРНЫХ СЕТЯХ Если два и более компьютера информационно соединены между собой с помощью взаимосвязанных каналов передачи данных, то такое соединение называется компьютерной

Компьютерные сети Что такое компьютерная сеть? КОМПЬЮТЕРНАЯ СЕТЬ соединение компьютеров для обмена информацией и совместного использования ресурсов (принтер, модем и т. д) Линия передачи данных Компьютерные

Лекция 13 Тема: Основы сетевых технологий. Эталонная модель взаимосвязи открытых систем. План: 1. Локальная вычислительная сеть: понятие и назначение 2. Семиуровневая модель организации локальной вычислительной

Локальная сеть Компьютерная сеть совокупность компьютеров, соединенных с помощью каналов связи и средств коммутации в единую систему для обмена сообщениями и доступа пользователей к программным, техническим,

Ó ÂappleÊ ÌËÂ 1. Â ÂÌËÂ... 6 1.1. Общие сведения о вычислительных системах, сетях и телекоммуникациях... 6 1.2. Понятие системы, сети и телекоммуникации... 9 1.3. Классификация вычислительных систем...

Вычислительные сети Лекция 2 1 2 Структура презентации 1. Основные компоненты сети. 2. Внешнее устройство. Интерфейс. Драйвер. 3. Передача данных. 4. Топологии сетей. 5. Домашнее задание. Основные компоненты

Сближение компьютерных и телекоммуникационных сетей Телекоммуникационные сети телефонные сети радиосеть телевизионные сети компьютерные сети Вид телекоммуникационной сети телефонные сети радиосети Вид

ТЕХНОЛОГИИ ФИЗИЧЕСКОГО УРОВНЯ ПЕРЕДАЧИ ДАННЫХ Занятие 2 Классификация компьютерных сетей 1. Назначение компьютерных сетей, их основные компоненты 2. Классификация КС a. Виды компьютерных сетей b. Типы

Компьютерные комплексы и сети Компьютерный комплекс представляет собой автоматизированную систему, полностью решающую поставленные перед ней задачи. В качестве комплекса в зависимости от его предназначения

Что такое компьютерная сеть? 1 Компьютерная сеть это группа компьютеров, соединённых линиями связи: электрические кабели телефонная линия оптоволоконный кабель (оптическое волокно) радиосвязь (беспроводные

Основы компьютерных сетей Сеть группа компьютеров и других устройств, соединенных каким-либо способом для обмена информацией и совместного использования ресурсов. Ресурсы аппаратное обеспечение (принтеры)

Московский физико-технический институт Факультет кибернетики и радиотехники Кафедра информатики и вычислительной техники Коммуникационные технологии компьютерных сетей д.т.н., проф., Перекатов В.И. Часть

КОМПЬЮТЕРНЫЕ СЕТИ Сеть - это два или более компьютеров, соединенных каналами связи. Прообразом компьютерной сети в начале 60-х г. XX в. стал терминальный доступ к мэйнфреймам, которые в режиме разделения

Лекция 2 СЕТИ Компьютерная (вычислительная) сеть - совокупность компьютеров и терминалов, соединенных с помощью каналов связи в единую систему План лекции Администратор компьютерных сетей Классификации

Лекция 20 1. Топология локальных вычислительных сетей Локальные вычислительные сети представляют собой принципиально новый подход к управлению технологическими комплексами и ГАП, позволяющий эффективно

МИНИСТЕРСТВО ОБРАЗОВАНИЯ ТУЛЬСКОЙ ОБЛАСТИ Государственное профессиональное образовательное учреждение Тульской области «Тульский государственный машиностроительный колледж имени Никиты Демидова» РАССМОТРЕНА

Образовательный минимум Четверть 3 Предмет Информатика Класс 11 Ярцева Вера Алексеевна- учитель истории и обществознания, e-mail [email protected] Общие требования: учащийся для получения зачета (допуска

Перечень экзаменационных вопросов по дисциплинам специальности 6М070400 - «Вычислительная техника и программное обеспечение» для поступающих в магистратуру Вопросы к разделу «Теория информации» 1. Области

ВВЕДЕНИЕ В Лекция 10 Информатика На основе лекции Гончарова С.Л. Вычислительная сеть это объединение и представление как единого целого различных информационных ресурсов (компьютеры, периферийные устройства,

Аппаратное обеспечение компьютерных сетей Виды сети Локальная Региональная Корпоративная Глобальная Локальные сети Локальная сеть соединение компьютеров, расположенных на небольших расстояниях друг от

Направление 09.03.03 Информатика 1.2 Лекция СЕТЕВЫЕ ТЕХНОЛОГИИ Лектор Молнина Елена Владимировна Старший преподаватель кафедры Информационных систем, ауд.9, гл.корпус. mail: [email protected] Юрга 2016 СОДЕРЖАНИЕ

Подготовил: преподаватель информатики Дохова А.М. Тема урока: «Технические и программные средства телекоммуникационных технологий. Интернет-технологии, способы и скоростные характеристики подключения,

В.Г. ОЛИФЕР, Н.А. ОЛИФЕР КОМПЬЮТЕРНЫЕ СЕТИ ПРИНЦИПЫ, ТЕХНОЛОГИИ, ПРОТОКОЛЫ УЧЕБНИК СОДЕРЖАНИЕ ОБЩИЕ ПРИНЦИПЫ ПОСТРОЕНИЯ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ... 7 1.1. ОТ ЦЕНТРАЛИЗОВАННЫХ СИСТЕМ - К ВЫЧИСЛИТЕЛЬНЫМ СЕТЯМ...7

Связь компьютера с ПУ Принципы построения сетей Связь двух ПК Виды связей Связность а полносвязная топология, б неполносвязная (ячеистая) а общая шина б звезда в кольцо г дерево д сетка Типы топологий

Учреждение образования «Гомельский государственный университет имени Франциска Скорины» УТВЕРЖДАЮ Проректор по учебной работе И.В. Семченко 2019 г. ПРОГРАММА вступительного испытания по дисциплине «Компьютерные

Содержательный модуль 1.3. Классификация и архитектура информационновычислительных сетей. 1. Информационная сеть как системообразующий компонент автоматизированных систем управления Как правило, информационные

Уважаемые ученики! В работе с книгой вам помогут навигационные значки: Важное утверждение или определение. Ссылка на упражнения в Единой коллекции цифровых образовательных ресурсов (далее ЕК ЦОР) в двух

Локальные вычислительные сети Вопросы 1. Основные понятия компьютерных сетей 2. Классификация компьютерных сетей 3. Среда передачи в компьютерных сетях 4. Топология сетей. Базовые топологии 5. Модель сетевого

Основы проектирования локальных компьютерных сетей Цели работы Изучение базовых технологий построения локальных сетей; получение навыков конфигурирования локальной компьютерной сети в зависимости от возлагаемых

Дисциплина: «Компьютерные сети». Тема 1. Локальные сети. Топология локальных сетей (10 часов) Занятие 3. (2 ч) План 1. Топологии. Топология шина - виды, разновидности, особенности 2. Топология кольцо особенности

О.Я. Кравец СЕТИ ЭВМ И ТЕЛЕКОММУНИКАЦИИ Учебное пособие Рекомендовано учебно-методическим объединением по образованию в области прикладной информатики в качестве учебного пособия для студентов высших учебных

Администрирование локальных сетей Лекция 4. Технологии локальных сетей Основное содержание лекции Применение локальных вычислительных сетей. Основные технологии построения локальной вычислительной сети.

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ивановский государственный химико-технологический университет С.В. Ситанов, С.С.Алаева

Вариант 1 Выберите правильный вариант ответа. Возможен только один вариант правильного ответа. 1. Что такое «компьютерная сеть»? а. Телефонная линия + компьютер; б. Группа компьютеров, соединённых линиями

Программа вступительных испытаний для абитуриентов, поступающих по программам магистратуры в 2017 году, составлена в соответствии с Федеральным государственным образовательным стандартом требований по

Рабочая программа дисциплины " Технические средства передачи информации в административно-управленческой деятельности" составлена в соответствии с требованиями к обязательному минимуму содержания основной

Томский государственный университет систем управления и радиоэлектроники (ТУСУР) Кафедра системного анализа (СА) Харьков Сергей Сергеевич Вычислительные машины, системы и сети Методические указания по

Министерство образования Республики Беларусь Учреждение образования Гомельский государственный университет им. Ф. Скорины Физический факультет «Информационные системы и сети» Лекция Введение в компьютерные

Введение в сети ЭВМ и телекоммуникации Компьютерная сеть Компьютерная сеть это система связи двух или более компьютеров и/или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование).

33. Функциональные компоненты операционных систем автономного компьютера. Сетевые ОС. Одноранговые и серверные сетевые ОС. Функциональные компоненты операционных систем автономного компьютера -программы

Проектирование и администрирование компьютерных сетей (Cisco)_рус_4кр_Батырхан С._3к3г_ДОТ 1 Что такое компьютерная сеть? 2 Самая низкая скорость передачи до скольки мб/с? 3 Самая высокая скорость передачи

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ СЕТЕВЫЕ ТЕХНОЛОГИИ (C.1.2.9.1) Специальность 09.05.01

Лекция 2 Введение в вычислительные сети Телематика. Это новая научно-техническая дисциплина, предметом которой являются методы и средства передачи информации на расстояния, существенно превышающие линейные

ЛЕКЦИЯ 20 1 1. Разновидности сетей КОМПЬЮТЕРНЫЕ СЕТИ. ОПРЕДЕЛЕНИЕ. ВОЗМОЖНОСТИ. СПОСОБЫ ОРГАНИЗАЦИИ. ЭТАЛОННАЯ МОДЕЛЬ ISO/OSI. Коммуникационная сеть - система, состоящая из объектов, осуществляющих функции

АНАЛИЗ ПРОБЛЕМ ЛОКАЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ Маркелов А. А. Университетский колледж ОГУ Оренбург, Россия ANALYSIS OF THE PROBLEMS OF LOCAL AREA NETWORKS Markelov A. A. University College OSU Orenburg,

Компьютерные сети Понятие компьютерной сети (КС) Подавляющее большинство компьютеров объединены в различные информационно-вычислительные сети: от малых локальных в домах или офисах до глобальных типа Интернет.

ЛЕКЦИЯ 3. КЛАССИФИКАЦИЯ АВТОМАТИЗИРОВАННЫХ ИНФОРМА- ЦИОННЫХ ТЕХНОЛОГИЙ ПО РАЗЛИЧНЫМ ПРИЗНАКАМ 1) Классификация автоматизированных информационных технологий по способу реализации 2) Классификация автоматизированных

Компьютерные сети Локальная сеть За период 1970 2002 гг. построены сотни национальных и международных компьютерных сетей. Благодаря этому в большинстве стран обеспечивается повсеместное внедрение информационных

ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И СЕТИ: МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ КОНТРОЛЬНОЙ РАБОТЫ Сост.: доц. Гедике А.И. Кафедра прикладной математики Разделы дисциплины 1. Вычислительная техника и компьютерные сети.

Как устроена компьютерная сеть. Электронная почта и другие услуги компьютерной сети. Что такое компьютерная сеть? Передача информации между пользователем и компьютером Передача информации между компьютерами

ЛЕКЦИЯ 9. РЕЖИМЫ ОБРАБОТКИ ИНФОРМАЦИИ 1) Пакетный режим автоматизированной обработки информации 2) Диалоговый режим автоматизированной обработки информации 3) Сетевой режим автоматизированной обработки

Для определения компонент вычислительных сетей приведем их общую классификацию. Для неё используются различные признаки, но чаще всего сети делят на типы по территориальному признаку, то есть по величине

ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ И КОМПЬЮТЕРНЫЕ СЕТИ Разработчик Белянина Н.В., канд. тех. наук, доц. Рецензент Артюшенко В.М., д-р тех. наук, проф. I Организационно-методический раздел 1 Цель дисциплины Целью дисциплины

Централизация технического обслуживания и эксплуатации АТСЦ-90 Панасенко А.А., Самошкина Н.В., Ерохин А.В. Введение Современный уровень развития систем связи предполагает создание широкой инфраструктуры

Администрирование локальных сетей Лекция 2. Основы организации сетей Основные вопросы лекции Передача данных по линиям связи. Двоичная передача и кодирование данных. Характеристики физических каналов:

Сетевые операционные системы Для чего компьютеры объединяют в сети? Совместное использование ресурсов Возможность ускорения вычислений Повышение надежности работы вычислительной техники Возможность применения

ARCNET Ethernet Fast Ethernet Gigabit Ethernet Технологии локальных сетей (ЛВС) Token Ring FDDI 100VG-AnyLAN Особенности технологий локальных сетей: - реализуют 2 нижних уровня модели OSI - структура локальных

Урок-зачет 11 класс В плену компьютерной сети Тип урока: урок обобщения и систематизации знаний. Цели урока: 1) проверка знаний учащихся по теме «Компьютерные телекоммуникации и Интернет»; 2) повышение

МНОГОУРОВНЕВАЯ МОДЕЛЬ СТЕКА СЕТЕВЫХ ПРОТОКОЛОВ Организация передачи данных Многоуровневая модель Система А Процесс Система B Процесс Уровень N+1 Уровень N Среда передачи данных Организация передачи данных

1.1.1. Основні поняття та визначення 1.1.2. Класифікація мереж 1.1.3. Види топологічних структур мереж. 1.1.4. Системи передачі даних Вычислительная сеть (ВС) это система взаимосвязанных и распределенных

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ Государственное автономное образовательное учреждение среднего профессионального образования города Москвы ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ 8 имени дважды Героя Советского

Локальная сеть Разработчик: Калмыкова Е.П. преподаватель КБАДК Компьютерная сеть соединение компьютеров для обмена информацией и совместного использования ресурсов (принтер, модем, дисковая память и т.д.).

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский экономический университет им. Г.В. Плеханова» Московский

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Национальный исследовательский университет «МИЭТ» «СОГЛАСОВАНО» «УТВЕРЖДАЮ» Директор

Компьютерная сеть (КС) - совокупность компьютеров и терминалов, соединенных с помощью каналов связи в единую систему, удовлетворяющую требованиям распределенной обработки данных .

В общем случае под телекоммуникационной сетью (ТС) понимают систему, состоящую из объектов, осуществляющих функции генерации, преобразования, хранения и потребления продукта, называемых пунктами (узлами) сети, и линий передачи (связи, коммуникаций, соединений), осуществляющих передачу продукта между пунктами .

В зависимости от вида продукта - информация, энергия, масса - различают соответственно информационные, энергетические и вещественные сети.

Информационная сеть (ИС) - коммуникационная сеть, в которой продуктом генерирования, переработки, хранения и использования информации является информация. Традиционно для передачи звуковой информации используются телефонные сети, изображений - телевидение, текста - телеграф (телетайп). В настоящее время все большее распространение получают информационные сети интегрального обслуживания, позволяющие передавать в едином канале связи звук, изображение и данные.

Вычислительная сеть (ВС) - информационная сеть, в состав которой входит вычислительное оборудование. Компонентами вычислительной сети могут быть ЭВМ и периферийные устройства, являющиеся источниками и приемниками данных, передаваемых по сети.

ВС классифицируют по ряду признаков.

  • 1. В зависимости от расстояния между узлами сети ВС можно разделить на три класса:
    • · локальные (ЛВС, LAN - Local Area Network) - охватывающие ограниченную территорию (обычно в пределах удаленности станций не более чем на несколько десятков или сотен метров друг от друга, реже на 1…2 км);
    • · корпоративные (масштаба предприятия) - совокупность связанных между собой ЛВС, охватывающих территорию, на которой размещено одно предприятие или учреждение в одном или несколько близко расположенных зданиях;
    • · территориальные - охватывающие значительное географическое пространство; среди территориальных сетей можно выделить сети региональные (MAN - Metropolitan Area Network) и глобальные (WAN - Wide Area Network), имеющие соответственно региональные или глобальные масштабы.

Особо выделяют глобальную сеть Интернет.

2. Важным признаком классификации вычислительных сетей является их топология, определяющая геометрическое расположение основных ресурсов вычислительных сети и связей между ними.

В зависимости от топологии соединений узлов различают сети шинной (магистральной), кольцевой, звездной, иерархической, произвольной структуры.

Среди ЛВС наиболее распространены :

  • · шинная (bus) - локальная сеть, в которой связь между любыми двумя станциями устанавливается через один общий путь и данные, передаваемые любой станцией, одновременно становятся доступными для всех других станций, подключенных к этой же среде передачи данных;
  • · кольцевая (ring) - узлы связаны кольцевой линией передачи данных (к каждому узлу подходят только две линии). Данные, проходя по кольцу, поочередно становятся доступными всем узлам сети;
  • · звездная (star) - имеется центральный узел, от которого расходятся линии передачи данных к каждому из остальных узлов.

Топологическая структура сети оказывает значительное влияние на ее пропускную способность, устойчивость сети к отказам ее оборудования, на логические возможности и стоимость сети.

Компьютерные телекоммуникации -- одна из наиболее динамично развивающихся областей информационных технологий. По сравнению с другими разделами информационных технологий ее технологическая составляющая значительно превосходит теоретическую. Поэтому эффективность изучения данной темы сильно зависит от возможности организовать практическую работу учащихся с компьютерными сетями.

В рамках данного раздела базового курса реализуется следующий перечень педагогических целей: дать представление о назначении и структуре локальных и глобальных сетей; познакомить учащихся с основными информационными услугами сетей, с возможностями Internet; обучить способам обмена файлами в локальной сети компьютерного класса; познакомить со способами поиска информации в Internet (при наличии технических возможностей).

локальные сети;

глобальные сети.

Тема компьютерных сетей обширна по числу понятий и может излагаться с разной степенью подробности. Раскрытие этой темы в школьных учебниках, как правило, носит краткий характер. Поэтому, наряду с обсуждением вопросов методики, в данный подраздел пособия включены дополнительные сведения по теме, которые будут полезны учителю.

Изучаемые вопросы:

¦ Локальная сеть (ЛС), организация и назначение.

¦ Локальные сети школьных КУВТ.

¦ Организация глобальных сетей (ГС).

¦ Информационные услуги ГС.

¦ Аппаратные средства сетей.

¦ Что такое Internet.

¦ Информационные услуги Internet и World Wide Web.

Если компьютеры в школьном кабинете информатики объединены в локальную сеть, то это обстоятельство существенно облегчает изучение данной темы. Именно школьный компьютерный класс должен стать отправной точкой в разговоре о передаче информации в компьютерных сетях. Определив компьютерную сеть как систему компьютеров, связанных каналами передачи информации, учитель демонстрирует такую систему на оборудовании компьютерного класса и сообщает, что такая сеть называется локальной.

Локальные компьютерные сети небольшие по масштабам и работают в пределах одного помещения, здания, предприятия. Возможно, что в школе действует локальная сеть, объединяющая компьютеры, установленные в разных помещениях: в учебных кабинетах, кабинете директора, бухгалтерии и др. Точно так же в локальную сеть часто объединяются различные отделы предприятий, фирм, учреждений.

Локальные сети, в зависимости от назначения и технических решений, могут иметь различные структуры объединения компьютеров. Их еще называют конфигурациями, архитектурой, топологией сети.

Бывают ситуации в ЛС, когда топология не имеет какой-то регулярной структуры. Например, компьютеры могут соединяться по принципу "каждый с каждым".

Использование локальных сетей отвечает двум основным целям:

1) обмену файлами между пользователями сети;

2) использованию общедоступных ресурсов: большого пространства дисковой памяти, принтеров, централизованной базы данных, программного обеспечения и др.

Пользователей общей локальной сети принято называть рабочей группой, а компьютеры, за которыми они работают, -- рабочими станциями. Если все компьютеры в сети равноправны, т.е. сеть состоит только из рабочих станций пользователей, то ее называют одноранговой сетью. Одноранговые сети используются для осуществления первой из отмеченных целей: для обмена файлами. У каждого компьютера в такой сети есть свое имя. Члены рабочей группы могут обращаться по этим именам к дисковой памяти ПК своих коллег и копировать файлы на свой компьютер или копировать свои файлы на другие компьютеры. Возможность такого обмена обеспечивается специальной сетевой операционной системой. Средствами сетевой ОС можно защитить информацию от постороннего доступа. Таким образом, локальная сеть избавляет от необходимости использовать дискеты для переноса информации с одного компьютера на другой.

Другой способ организации локальной сети -- сеть с выделенным (главным) компьютером. Его называют файл-сервером. Чаще всего в школьных компьютерных классах используется именно такая организация. К файл-серверу имеет доступ учитель, а ученики работают за рабочими станциями. Все рабочие станции соединены с главной машиной (схема соединения "звезда"). Поэтому непосредственный обмен информацией происходит между сервером и каждой рабочей станцией. Конечно, в такой системе ученики тоже могут обмениваться файлами, но "транзитом" через сервер. Обычно сервер -- это более мощная машина, чем рабочие станции, с большим жестким диском, с дополнительными внешними устройствами (например, CD-ROM -- дисководом, принтером, модемом). При такой организации локальной сети реализуется вторая из отмеченных выше целей: доступ пользователей к общим аппаратным и информационным ресурсам сервера. В частности, программы, хранящиеся на диске сервера, могут загружаться в оперативную память рабочей станции и запускаться на исполнение подобно тому, как это делается с собственного диска ПК. Со своего рабочего места пользователь может создавать и сохранять файлы на жестком диске сервера.

Работой сети управляет сетевая операционная система. Операционная система поддерживает стандарты (протоколы) обмена информацией в сети, устанавливает очередность при обращении различных пользователей к одним и тем же ресурсам и пр. Основное назначение сетевой ОС -- дать возможность пользователям работать в локальной сети, не мешая друг другу. Работу одноранговых сетей поддерживает операционная система Windows 95/98. Наиболее распространенные ОС для сетей с выделенным сервером: Novell NetWare, Windows NT.

Глобальные компьютерные сети объединяют между собой ЭВМ, расположенные на больших расстояниях (в масштабах региона, страны, мира). Если локальную сеть ученики могут увидеть своими глазами, то знакомство с глобальными сетями будет носить более описательный характер. Здесь, как и во многих других темах, приходит на помощь метод аналогий. Устройство глобальной сети можно сравнить с устройством системы телефонной связи -- телефонной сети. Телефоны абонентов связаны с узлами-коммутаторами. В свою очередь, все городские коммутаторы связаны между собой так, что между любыми двумя телефонами абонентов может быть установлена связь. Вся эта система образует телефонную сеть города. Городские (региональные) сети связаны между собой по междугородним линиям. Выход на телефонные сети других стран происходит по международным линиям связи. Таким образом, весь мир "опутан" телефонными сетями. Два абонента в любой части света, подключенные к этой сети, могут связаться друг с другом.

Рассказав об этом, предложите ученикам представить, что у абонентов вместо телефонных аппаратов установлены персональные компьютеры; вместо коммутаторов -- мощные компьютерные узлы, и по такой сети циркулирует самая разнообразная информация: от текстовой до видео и звука. Это и есть современная мировая система глобальных компьютерных сетей.

Первая глобальная компьютерная сеть начала действовать в 1969 г. в США, она называлась ARPANET и объединяла в себе всего 4 удаленных компьютера. Примером современной сети научно-образовательного назначения является BITNET. Она охватывает 35 стран Европы, Азии и Америки, объединяет более 800 университетов, колледжей, научных центров. Крупнейшей российской сетью является RELCOM, созданная в 1990 г. RELCOM входит в европейское объединение сетей EUNET, которая, в свою очередь, является участником гигантского мирового сообщества INTERNET. Такая иерархичность характерна для организации глобальных сетей.

Сеть состоит из узловых хост-компьютеров, ПК абонентов сети, линии связи. Обычно узел сети содержит не один, а множество компьютеров. Функции серверов различных сетевых услуг могут выполнять разные компьютеры.

Хост-компьютеры постоянно находятся во включенном состоянии, постоянно готовы к приему-передаче информации. В таком случае говорят, что они работают в режиме on-line. Компьютеры абонентов выходят на связь с сетью (в режим on-line) лишь на определенное время -- сеанс связи. Переслав и получив необходимую информацию, абонент может отключиться от сети и далее работать с полученной информацией автономно -- в режиме off-line. Маршрут передачи информации пользователю обычно неизвестен. Он может быть уверен лишь в том, что информация проходит через узел подключения и доходит до пункта назначения. Маршрутизацией передаваемых данных занимаются системные средства сети. В разных сеансах связь с одним и тем же корреспондентом может проходить по разным маршрутам.

Шлюзом называют компьютер, организующий связь данной сети с другими глобальными сетями.

Информационные услуги глобальных сетей. Электронная почта. В истории глобальных сетей электронная почта (e-mail) появилась как самая первая информационная услуга. Эта услуга остается основной и важнейшей в компьютерных телекоммуникациях. Можно сказать, что происходит процесс вытеснения традиционной бумажной почты электронной почтой. Преимущества последней очевидны: прежде всего, это высокая скорость доставки корреспонденции (минуты, редко -- часы), сравнительная дешевизна. Уже сейчас огромные объемы деловой и личной переписки идут через e-mail. Электронная почта в сочетании с факсимильной связью обеспечивают абсолютное большинство потребностей в передаче писем и документов.

Для того чтобы абонент мог воспользоваться услугами электронной почты, он должен:

* иметь аппаратное подключение своего персонального компьютера к почтовому серверу узла компьютерной сети;

* иметь на этом сервере свой почтовый ящик и пароль для обращения к нему;

* иметь личный электронный адрес;

* иметь на своем компьютере клиент-программу электронной почты (мэйлер).

Наряду с электронной почтой в глобальных сетях существуют и другие виды информационных услуг для пользователей.

Telnet. Эта услуга позволяет пользователю работать в режиме терминала удаленного компьютера, т. е. использовать установленные на нем программы так же, как программы на собственном компьютере.

FTP. Так называется сетевой протокол и программы, которые обслуживают работу с каталогами и файлами удаленной машины. Клиент FTP имеет возможность просматривать каталоги FTP-cepверов, копировать интересующие его файлы.

Archie. Так называются специальные серверы, выполняющие роль поисковых программ в системе FTP-серверов. Они помогают быстро найти нужные вам файлы.

Gopher. Система поиска и извлечения информации из сети с развитыми средствами многоуровневых меню, справочных книг, индексных ссылок и пр.

WAIS. Сетевая информационно-поисковая система, основанная на распределенных базах данных и библиотеках.

Usenet. Система телеконференций. Другое название -- группы новостей. Обслуживает подписчиков определенных тематических конференций, рассылая им материалы по электронной почте. ящики абонентов и, обнаружив там исходящую корреспонденцию, организует ее отравление. Аппаратные средства сетей. Хост-компьютеры (серверы). Хост-компьютер имеет собственный уникальный адрес в сети и выполняет роль узловой машины, обслуживающей абонентов. В качестве хост-компьютеров используются разные типы машин: от мощных ПК до мини-ЭВМ и даже мэйнфреймов (больших ЭВМ). Основные требования -- высокоскоростной процессор и большой объем дисковой памяти (сотни Гбайт). На хост-компьютерах в сети Internet используется операционная система Unix. Все сервер-программы, обслуживающие приложения, работают под управлением Unix.

Из того о чем уже говорилось выше, следует, что понятие "сервер" носит программно-аппаратный смысл. Например, хост-компьютер, на котором в данный момент работает сервер-программа электронной почты, выполняет роль почтового сервера. Если на этой же машине начинает работать сервер-программа WWW, то она становится Web-сервером. Часто функции серверов различных услуг разделены на узле сети между разными компьютерами.

Линии связи. Основные типы линий связи между компьютерами сети: телефонные линии, электрические кабели, оптоволоконный кабель и беспроводная связь. Главными параметрами линий связи являются пропускная способность (максимальная скорость передачи информации), помехоустойчивость, стоимость. По параметру стоимости самыми дорогими являются оптоволоконные линии, самыми дешевыми -- телефонные. Однако с уменьшением цены уменьшается и качество работы линии. В табл. 12.1 даны сравнительные характеристики линий по параметрам скорости и помехоустойчивости.

Таблица 1. Характеристики линий связи

Чаще всего для связи между хост-компьютерами используются выделенные телефонные линии или радиосвязь. Если узлы сети расположены сравнительно недалеко друг от друга (в пределах города), то связь между ними может быть организована по кабельным линиям -- электрическим или оптоволоконным. В последнее время в сети Internet активно используется спутниковая радиосвязь.

Обычно абоненты (клиенты) подключаются к узлу своего провайдера через телефонную линию. Все чаще для этих целей начинает применяться беспроводная связь.

С точки зрения пользователя, Интернет -- это определенное множество информационных услуг, которые он может получать от сети. В число услуг входят: электронная почта, телеконференции (списки рассылки), архивы файлов, справочники и базы данных, Всемирная паутина -- WWW и пр. Интернет -- это неограниченные информационные ресурсы. Влияние, которое окажет Интернет на развитие человеческого общества, еще до конца не осознано.

Информационные услуги Интернет. Наряду с перечисленными выше информационными услугами (электронной почтой, телеконференциями и др.), предоставляемыми пользователям глобальных сетей, существуют услуги, появление и развитие которых связано исключительно с развитием мировой сети Интернет. Наиболее заметной среди них является WWW.

WWW-- World Wide Web -- Всемирная паутина. Это гипертекстовая информационная система в Интернете. В последнее время WWW и ее программное обеспечение становится универсальным средством информационных услуг в Интернет.

Основные понятия, связанные с WWW:

Web-страница -- основная информационная единица в WWW, имеющая свой адрес;

Web-сервер -- компьютер, хранящий Web-страницы и соответствующее программное обеспечение для работы с ними;

Web-браузер -- клиент-программа, позволяющая извлекать и просматривать Web-страницы;

Web-сайт -- раздел данных на Web-сервере, принадлежащий какой-то организации или лицу. В этом разделе его владелец размещает свою информацию в виде множества взаимосвязанных Web-страниц. Обычно сайт имеет титул -- головную страницу, от которой по гиперссылкам или указателям "вперед-назад" можно двигаться по страницам сайта. Наиболее популярными Web-браузерами являются Internet Explorer и Netscape Navigator. Основная задача браузера -- обращение к Web-серверу за искомой страницей и вывод страницы на экран. Простейший способ получения нужной информации из Интернет -- указание адреса искомого ресурса. Для хранения и поиска информации в Интернет используется универсальная адресация, которая носит название URL -- Uniform Resource Locator. В помощь пользователю в Интернет действует ряд специальных поисковых программ. Еще их называют поисковыми серверами, поисковыми машинами, поисковыми системами. Поисковая система выдает пользователю список адресов документов, в которых встречаются указанные пользователем ключевые слова. Ниже приведены адреса наиболее популярных российских поисковых серверов:

http://mssia.agama.com/Aport/

http://www.rambler.ru/

http://yandex.ru/

http://www.altavista.telia.com/

Кроме WWW, среди относительно новых услуг в Интернет существуют следующие:

IRC. Internet Relay Chat -- "болтовня" в реальном времени. Позволяет вести письменный диалог удаленным собеседникам в режиме on-line;

Internet-телефония. Услуга, поддерживающая голосовое общение клиентов сети в режиме on-line.

При наличии возможности выхода в Интернет, практическая работа учащихся может быть организована по таким направлениям:

* подготовка, отправление и прием электронной почты;

* работа с Web-браузером, просмотр Web-страниц;

* обращение в FTP -- серверам, извлечение файлов;

* поиск информации в системе WWW с помощью поисковых программ.

Знакомство с каждым новым видом прикладного программного обеспечения, обслуживающим соответствующую информационную услугу (почтовая программа, Web-браузер, поисковая программа) следует проводить по стандартной методической схеме: данные, среда, режимы работы, система команд.

Компьютерные сети и телекоммуникации XXI века


Введение

2.1 Виды архитектур ЛС

2.3 Методы доступа в компьютерных сетях

3. Локальные сети ученого назначения

4. Телекоммуникации

Список использованной литературы


Введение

Компьютерная сеть - объединение нескольких ЭВМ для совместного решения информационных, вычислительных, учебных и других задач.

Одна из первых возникших при развитии вычислительной техники задач, потребовавшая создания сети хотя бы из двух ЭВМ - обеспечение многократно большей, чем могла дать в то время одна машина, надежности при управлении ответственным процессом в режиме реального времени. Так, при запуске космического аппарата необходимые темпы реакции на внешние события превосходят возможности человека, и выход из строя управляющего компьютера грозит непоправимыми последствиями. В простейшей схеме работу этого компьютера дублирует второй такой же, и при сбое активной машины содержимое ее процессора и ОЗУ очень быстро перебрасывается на вторую, которая подхватывает управление (в реальных системах все, конечно, происходит существенно сложнее).

Сети ЭВМ породили существенно новые технологии обработки информации - сетевые технологии. В простейшем случае сетевые технологии позволяют совместно использовать ресурсы - накопители большой емкости, печатающие устройства, доступ в Internet, базы и банки данных. Наиболее современные и перспективные подходы к сетям связаны с использованием коллективного разделения труда при совместной работе с информацией - разработке различных документов и проектов, управлении учреждением или предприятием и т.д.

Компьютерные сети и сетевые технологии обработки информации стали основой для построения современных информационных систем. Компьютер ныне следует рассматривать не как отдельное устройство обработки, а как "окно" в компьютерные сети, средство коммуникаций с сетевыми ресурсами и другими пользователями сетей.


1. Аппаратные средства компьютерных сетей

Локальные сети (ЛС ЭВМ) объединяют относительно небольшое число компьютеров (обычно от 10 до 100, хотя изредка встречаются и гораздо больше) в пределах одного помещения (учебный компьютерный класс), здания или учреждении (например, университета). Традиционное название - локальная вычислительная сеть (ЛВС) - скорее дань тем временам, когда сети в основном использовались для решения вычислительных задач; сегодня же в 99% случаев речь идет исключительно об обмене информацией в виде текстов, графических и видео-образов, числовых массивов. Полезность ЛС объясняется тем, что от 60% до 90% необходимой учреждению информации циркулирует внутри него, не нуждаясь в выходе наружу.

Большое влияние на развитие ЛС оказало создание автоматизированных систем управления предприятиями (АСУ). АСУ включают несколько автоматизированных рабочих мест (АРМ), измерительных комплексов, пунктов управления. Другое важнейшее поле деятельности, в котором ЛС доказали свою эффективность - создание классов учебной вычислительной техники (КУВТ).

Благодаря относительно небольшим длинам линий связи (как правило, не более 300 метров), по ЛC можно передавать информацию в цифровом виде с высокой скоростью передачи. На больших расстояниях такой способ передачи неприемлем из-за неизбежного затухания высокочастотных сигналов, в этих случаях приходится прибегать к дополнительным техническим (цифро-аналоговым преобразованиям) и программным (протоколам коррекции ошибок и др.) решениям.

Характерная особенность ЛС - наличие связывающего всех абонентов высокоскоростного канала связи для передачи информации в цифровом виде. Существуют проводные и беспроводные каналы. Каждый из них характеризуется определенными значениями существенных с точки зрения организации ЛС параметров:

1. скорости передачи данных;

2. максимальной длины линии;

3. помехозащищенности;

4. механической прочности;

5. удобства и простоты монтажа;

6. стоимости.

В настоящее время обычно применяют четыре типа сетевых кабелей:

1. коаксиальный кабель;

2. незащищенная витая пара;

3. защищенная витая пара;

4. волоконно-оптический кабель.

Первые три типа кабелей передают электрический сигнал по медным проводникам. Волоконно-оптические кабели передают свет по стеклянному волокну.

Большинство сетей допускает несколько вариантов кабельных соединений.

Коаксиальные кабели состоят из двух проводников, окруженных изолирующими слоями. Первый слой изоляции окружает центральный медный провод. Этот слой оплетен снаружи внешним экранирующим проводником. Наиболее распространенными коаксиальными кабелями являются толстый и тонкий кабели "Ethernet". Такая конструкция обеспечивает хорошую помехозащищенность и малое затухание сигнала на расстояниях.

Различают толстый (около 10 мм в диаметре) и тонкий (около 4 мм) коаксиальные кабели. Обладая преимуществами по помехозащищенности, прочности, длине, толстый коаксиальный кабель дороже и сложнее в монтаже (его сложнее протягивать по кабельным каналам), чем тонкий. До последнего времени тонкий коаксиальный кабель представлял собой разумный компромисс между основными параметрами линий связи ЛВС и наиболее часто используется для организации крупных ЛС предприятий и учреждений. Однако более дорогие толстые кабели обеспечивают лучшую передачу данных на большее расстояние и менее чувствительны к электромагнитным помехам.

Витые пары представляют собой два провода, скрученных вместе шестью оборотами на дюйм для обеспечения защиты от электромагнитных помех и согласования электрического сопротивления. Другим наименованием, обычно потребляемым для такого провода, является "IBM тип-3". В США такие кабели прокладываются при постройке зданий для обеспечения телефонной связи. Однако использование телефонного провода, особенно когда он уже размещен в здании, может создать большие проблемы. Во-первых, незащищенные витые пары чувствительны к электромагнитным помехам, например электрическим шумам, создаваемым люминесцентными светильниками и движущимися лифтами. Помехи могут создавать также сигналы, передаваемые по замкнутому контуру в телефонных линиях, проходящих вдоль кабеля локальной сети. Кроме того, витые пары плохого качества могут иметь переменное число витков на дюйм, что искажает расчетное электрическое сопротивление.

Важно также заметить, что телефонные провода не всегда проложены по прямой линии. Кабель, соединяющий два рядом расположенных помещения, может на самом деле обойти половину здания. Недооценка длины кабеля в этом случае может привести к тому, что фактически она превысит максимально допустимую длину.

Защищенные витые пары схожи с незащищенными, за исключением того, что они используют более толстые провода и защищены от внешнего воздействия шеи изолятора. Наиболее распространенный тип такого кабеля, применяемого в локальных сетях, "IBM тип-1" представляет собой защищенный кабель с двумя витыми парами непрерывного провода. В новых зданиях лучшим вариантом может быть кабель "тип-2", так как он включает помимо линии передачи данных четыре незащищенные пары непрерывного провода для передачи телефонных переговоров. Таким образом, "тип-2" позволяет использовать один кабель для передачи как телефонных переговоров, так и данных по локальной сети.

Защита и тщательное соблюдение числа повивов на дюйм делают защищенный кабель с витыми парами надежным альтернативным кабельным соединением Однако эта надежность приводит к увеличению стоимости.

Волоконно-оптические кабели передают данные в виде световых импульсов стеклянным "проводам". Большинство систем локальных сетей в настоящее время поддерживает волоконно-оптическое кабельное соединение. Волоконно-оптический кабель обладает существенными преимуществами по сравнению с любыми вариантами медного кабеля. Волоконно-оптические кабели обеспечивают наивысшую скорость передачи; они более надежны, так как не подвержены потерям информационных пакетов из-за электромагнитных помех. Оптический кабель очень тонок и гибок, что делает его транспортировку более удобной по сравнению с более тяжелым медным кабелем. Однако наиболее важно то, что только оптический кабель имеет достаточную пропускную способность, которая в будущем потребуется для более быстрых сетей.

Пока еще цена волоконно-оптического кабеля значительно выше медного. По сравнению с медным кабелем монтаж оптического кабеля более трудоемок, по сколько концы его должны быть тщательно отполированы и выровнены до обеспечения надежного соединения. Однако ныне происходит переход на оптоволоконные линии, абсолютно неподверженные помехам и находящиеся вне конкуренции по пропускной способности. Стоимость таких линий неуклонно снижается, технологические трудности стыковки оптических волокон успешно преодолеваются.

Беспроводная связь на радиоволнах может использоваться для организации сетей в пределах больших помещений типа ангаров или павильонов, там где использование обычных линий связи затруднено или нецелесообразно. Кроме того, беспроводные линии могут связывать удаленные сегменты локальных сетей на расстояниях 3 - 5 км (с антенной типа волновой канал) и 25 км (с направленной параболической антенной) при условии прямой видимости. Организации беспроводной сети существенно дороже, чем обычной.

Для организации учебных ЛС чаще всего используется витая пара, как самая дешевая, поскольку требования к скорости передачи данных и длине линий не являются критическими.

Для связи компьютеров с помощью линий связи ЛС требуются адаптеры сети (или, как их иногда называют, сетевые платы). Самыми известными являются: адаптеры следующих трех типов:

1. ArcNet; 2. Token Ring; 3. Ethernet.


2. Конфигурация ЛС и организация обмена информацией

2.1 Виды архитектур ЛС

В простейших сетях с небольшим числом компьютеров они могут быть полностью равноправными; сеть в этом случае обеспечивает передачу данных от любого компьютера к любому другому для коллективной работы над информацией. Такая сеть называется одноранговой.

Однако в крупных сетях с большим числом компьютеров оказывается целесообразным выделять один (или несколько) мощных компьютеров для обслуживания потребностей сети (хранение и передачу данных, печать на сетевом принтере). Такие выделенные компьютеры называют серверами; они работают под управлением сетевой операционной системы. В качестве сервера обычно используется высокопроизводительный компьютер с большим ОЗУ и винчестером (или даже несколькими винчестерами) большой емкости. Клавиатура и дисплей для сервера сети не обязательны, поскольку они используются очень редко (для настройки сетевой ОС).

Все остальные компьютеры называются рабочими станциями. Рабочие станции могут не иметь винчестерских дисков или даже дисководов вовсе. Такие рабочие станции называют бездисковыми. Первичная загрузка ОС на бездисковые рабочие станции происходит по локальной сети с использованием специально устанавливаемых на сетевые адаптеры рабочих станций микросхем ОЗУ, хранящих программу начальной загрузки.

ЛС в зависимости от назначения и технических решений могут иметь различные конфигурации (или, как еще говорят, архитектуру, или топологию).

В кольцевой ЛС информация передается по замкнутому каналу. Каждый абонент непосредственно связан с двумя ближайшими соседями, хотя в принципе способен связаться с любым абонентом сети.

В звездообразной (радиальной) ЛС в центре находится центральный управляющий компьютер, последовательно связывающийся с абонентами и связывающий их друг с другом.

В шинной конфигурации компьютеры подключены к общему для них каналу (шине), через который могут обмениваться сообщениями.

В древовидной - существует "главный" компьютер, которому подчинены компьютеры следующего уровня, и т.д.

Кроме того, возможны конфигурации без отчетливого характера связей; пределом является полносвязная конфигурация, когда каждый компьютер в сети непосредственно связан с любым другим компьютером.

В крупных ЛС предприятий и учреждений чаще всего используется шинная (шейная) топология, соответствующая архитектуре многих административных зданий, имеющих длинные коридоры и кабинеты сотрудников вдоль них. Для учебных целей в КУВТ чаще всего используют кольцевые и звездообразные ЛС.

В любой физической конфигурации поддержка доступа от одного компьютера к другому, наличие или отсутствие выделенного компьютера (в составе КУВТ его называют "учительским", а остальные - "ученическими"), выполняется программой – сетевой операционной системой, которая по отношению к ОС отдельных компьютеров является надстройкой. Для современных высокоразвитых ОС персональных компьютеров вполне характерно наличие сетевых возможностей (например, OS/2, WINDOWS 95-98).

2.2 Компоненты передачи данных по сети

Процесс передачи данных по сети определяют шесть компонент:

1. компьютер-источник;

2. блок протокола;

3. передатчик;

4. физическая кабельная сеть;

5. приемник;

6. компьютер-адресат.

Компьютер-источник может быть рабочей станцией, файл-сервером, шлюзом или любым компьютером, подключенным к сети. Блок протокола состоит из набора микросхем и программного драйвера для платы сетевого интерфейса. Блок протокола отвечает за логику передачи по сети. Передатчик посылает электрический сигнал через физическую топологическую схему. Приемник распознает и принимает сигнал, передающийся по сети, и направляет его для преобразования в блок протокола. Цикл передачи данных начинается с компьютера-источника, передающего исходные данные в блок протокола. Блок протокола организует данные в пакет передачи, содержащий соответствующий запрос к обслуживающим устройствам, информацию по обработке запроса (включая, если необходимо, адрес получателя) и исходные данные для передачи. Пакет затем направляется в передатчик для преобразования в сетевой сигнал. Пакет распространяется по сетевому кабелю пока не попадает в приемник, где перекодируется в данные. Здесь управление переходит к блоку протокола, который проверяет данные на сбойность, передает "квитанцию" о приеме пакета источнику, переформировывает пакеты и передает их в компьютер-адресат.

по дисциплине «Компьютерные сети и телекоммуникации»


ВВЕДЕНИЕ.. 65

2 КАБЕЛИ И ИНТЕРФЕЙСЫ... 10

3 ОБМЕН ДАННЫХ В СЕТИ.. 15

6 СЛУЖБЫ СЕТИ ИНТЕРНЕТ.. 40

8 СРЕДСТВА ПРОСМОТРА WEB.. 54

ВВЕДЕНИЕ.. 6

1 СЕТЕВЫЕ КОНЦЕПЦИИ И ТЕРМИНЫ... 7

1.1 Основные понятия. 7

1.2 Классификация сетей по масштабу. 7

1.3 Классификация сетей по наличию сервера. 7

1.3.1 Одноранговые сети. 7

1.3.2 Сети с выделенным сервером. 8

1.4 Выбор сети. 9

2 КАБЕЛИ И ИНТЕРФЕЙСЫ... 10

2.1 Типы кабелей. 10

2.1.1 Кабель типа «витая пара» – twisted pair 10

2.1.2 Коаксиальный кабель. 11

2.1.3 Оптоволоконный кабель. 12

2.2 Беспроводные технологии. 12

2.2.1 Радиосвязь. 13

2.2.2 Связь в микроволновом диапазоне. 13

2.2.3 Инфракрасная связь. 13

2.3 Параметры кабелей. 13

3 ОБМЕН ДАННЫХ В СЕТИ.. 15

3.1 Общие понятия. Протокол. Стек протоколов. 15

3.2 Модель ISO/OSI 16

3.3 Функции уровней модели ISO/OSI 18

3.4 Протоколы взаимодействия приложений и протоколы транспортной подсистемы. 21

3.5 Функциональное соответствие видов коммуникационного оборудования уровням модели OSI 22

3.6 Спецификация IEEE 802. 24

3.7 По стеку протоколов. 25

4 СЕТЕВОЕ ОБОРУДОВАНИЕ И ТОПОЛОГИИ.. 27

4.1 Сетевые компоненты. 27

4.1.1 Сетевые карты. 27

4.1.2 Повторители и усилители. 28

4.1.3 Концентраторы. 29

4.1.4 Мосты. 29

4.1.5 Маршрутизаторы. 30

4.1.6 Шлюзы. 30

4.2 Типы сетевой топологии. 31

4.2.1 Шина. 31

4.2.2 Кольцо. 32

4.2.3 Звезда. 32

4.2.5 Смешанные топологии. 33

5 ГЛОБАЛЬНАЯ СЕТЬ ИНТЕРНЕТ.. 36

5.1 Теоретические основы Интернета. 36

5.2 Работа со службами Интернета. 37

6 СЛУЖБЫ СЕТИ ИНТЕРНЕТ.. 40

6.1 Терминальный режим. 40

6.2 Электронная почта (E-Mail) 40

6.4 Служба телеконференций (Usenet) 41

6.5 Служба World Wide Web (WWW) 43

6.6 Служба имен доменов (DNS) 45

6.7 Служба передачи файлов (FTP) 48

6.8 Служба Internet Relay Chat 49

6.9 Служба ICQ.. 49

7 ПОДКЛЮЧЕНИЕ К СЕТИ ИНТЕРНЕТ.. 51

7.1 Основные понятия. 51

7.2 Установка модема. 52

7.3 Подключение к компьютеру поставщика услуг Интернета. 53

8 СРЕДСТВА ПРОСМОТРА WEB.. 54

8.1 Понятие броузеров и их функции. 54

8.2 Работа с программой Internet Explorer 54

8.2.1 Открытие и просмотр Web-страниц. 56



8.2.3 Приемы управления броузером. 57

8.2.4 Работа с несколькими окнами. 58

8.2.5 Настройка свойств броузера. 58

8.3 Поиск информации в World Wide Web. 60

8.4 Прием файлов из Интернета. 62

9 РАБОТА С ЭЛЕКТРОННЫМИ СООБЩЕНИЯМИ.. 64

9.1 Отправка и получение сообщений. 64

9.2 Работа с программой Outlook Express. 65

9.2.1 Создание учетной записи. 65

9.2.2 Создание сообщения электронной почты. 66

9.2.3 Подготовка ответов на сообщения. 66

9.2.4 Чтение сообщений телеконференций. 67

9.3 Работа с адресной книгой. 67


ВВЕДЕНИЕ

Рассматриваемый в данном конспекте лекций материал - не о конкретной операционной системе и даже не о конкретном типе операционных систем. В нем операционные системы (ОС) рассматриваются с самых общих позиций, а описываемые фундаментальные концепции и принципы построения справедливы для большинства ОС.


1 СЕТЕВЫЕ КОНЦЕПЦИИ И ТЕРМИНЫ

1.1 Основные понятия

Сеть – это соединение между двумя и более компьютерами, позволяющее им разделять ресурсы.

1.2 Классификация сетей по масштабу

Локальная сеть (Local Area Network) представляет собой набор соединенных в сеть компьютеров, расположенных в пределах небольшого физического региона, например, одного здания.

Это набор компьютеров и других подключенных устройств, которые укладываются в зону действия одной физической сети. Локальные сети представляют собой базовые блоки для построения объединенных и глобальных сетей.

Глобальные сети (Wide Area Network) могут соединять сети по всему миру; для межсетевых соединений обычно используются сторонние средства коммуникаций.

Соединения в глобальных сетях могут быть очень дорогими, так как стоимость связи растет с ростом ширины полосы пропускания. Таким образом, лишь небольшое число соединений в глобальных сетях поддерживают ту же полосу пропускания, что и обычные локальные сети.

Региональные сети (Metropolitan Area Network) используют технологии глобальных сетей для объединения локальных сетей в конкретном географическом регионе, например, городе.

1.3 Классификация сетей по наличию сервера

1.3.1 Одноранговые сети

Компьютеры в одноранговых сетях могут выступать как в роли клиентов, так и в роли серверов. Так как все компьютеры в этом типе сетей равноправны, то одноранговые сети не имеют централизованного управления разделением ресурсов. Любой из компьютеров в этой сети может разделять свои ресурсы с любым компьютером из этой же сети. Одноранговын взаимоотношения также означают, что ни один компьютер не имеет ни высшего приоритета на доступ, ни повышенной ответственности за предоставление ресурсов в совместное использование.

Преимущества одноранговых сетей:

– они легки в установке и настройке;

– отдельные машины не зависят от выделенного сервера;

– пользователи в состоянии контролировать свои собственные ресурсы;

– недорогой тип сетей в приобретении и эксплуатации;

– не нужно никакого дополнительного оборудования или программного обеспечения, кроме операционной системы;

– нет необходимости нанимать администратора сети;

– хорошо подходит с количеством пользователей, не превышающих 10.

Недостатки одноранговых сетей:

– применение сетевой безопасности одновременно только к одному ресурсу;

– пользователи должны помнить столько паролей, сколько имеется разделенных ресурсов;

– необходимо производить резервное копирование отдельно на каждом компьютере, чтобы защитить все совместные данные;

– при получении доступа к ресурса, на компьютере, на котором этот ресурс расположен, ощущается падение производительности;

– не существует централизованной организационной схемы для поиска и управления доступом к данным.

1.3.2 Сети с выделенным сервером

Компания Microsoft предпочитает термин Server-based. Сервер представляет собой машину (компьютер), чьей основной задачей является реакция на клиентские запросы. Серверы редко управляются кем-то непосредственно – только чтобы установить, настроить или обслуживать.

Достоинства сетей с выделенным сервером:

– они обеспечивают централизованное управление учетными записями пользователей, безопасностью и доступом, что упрощает сетевое администрирование;

– более мощное оборудование означает и более эффективный доступ к ресурсам сети;

– пользователям для входа в сеть нужно помнить только один пароль, что позволяет им получать доступ ко всем ресурсам, у которым имеет право;

– такие сети лучше масштабируются (растут) с ростом числа клиентов.

Недостатки сетей с выделенным сервером:

– неисправность сервера может сделать сеть неработоспособной, в лучшем случае – потеря сетевых ресурсов;

– такие сети требуют квалифицированного персонала для сопровождения сложного специализированного программного обеспечения;

– стоимость сети увеличивается, благодаря потребности в специализированном оборудовании и программном обеспечении.

1.4 Выбор сети

Выбор сети зависит от ряда обстоятельств:

– количество компьютеров в сети (до 10 – одноранговые сети);

– финансовые причины;

– наличие централизованного управления, безопасность;

– доступ к специализированным серверам;

– доступ к глобальной сети.


2 КАБЕЛИ И ИНТЕРФЕЙСЫ

На самом нижнем уровне сетевых коммуникаций находится носитель, по которому передаются данные. В отношении передачи данных термин media (носитель, среда передачи данных) может включать в себя как кабельные, так и беспроводные технологии.

2.1 Типы кабелей

Существует несколько различных видов кабелей, используемых в современных сетях. Различные сетевые ситуации могут потребовать различных типов кабелей.

2.1.1 Кабель типа «витая пара» – twisted pair

Представляет собой сетевой носитель, используемый во многих сетевых топологиях, включая Ethernet, ARCNet, IBM Token Ring.

Витая пара бывает двух видов.

1. Неэкранированная витая пара.

Имеется пять категорий неэкранированной витой пары. Они нумеруются по порядку возрастания качества от CAT1 до CAT5. Кабели более высокой категории обычно содержат больше пар проводников, и эти проводники имеют больше витков на единицу длины.

CAT1 – телефонный кабель, не поддерживает цифровой передачи данных.

CAT2 – представляет собой редко используемый старый тип неэкранированной витой пары. Он поддерживает скорость передачи данных до 4 Мбит/с.

CAT3 – минимальный уровень неэкранированной витой пары, требуемый для сегодняшних цифровых сетей, имеет пропускную способность 10 Мбит/с.

CAT4 – промежуточная спецификация кабеля, поддерживающая скорость передачи данных до 16 Мбит/с.

CAT5 – наиболее эффективный тип неэкранированной витой пары, поддерживающий скорость передачи данных до 100 Мбит/с.

Кабели неэкранированной витой пары соединяют сетевую карту каждого компьютера с сетевой панелью или с сетевым концентратором с помощью соединителя RJ-45 для каждой точки соединения.

Примером такой конфигурации является стандарт на сеть Ethernet 10Base-T, который характеризуется кабелем неэкранированная витая пара (от CAT3 до CAT5) и использованием соединителя RJ-45.

Недостатки:

– чувствительность к помехам со стороны внешних электромагнитных источников;

– взаимное наложение сигнала между смежными проводами;

– неэкранированная витая пара уязвима для перехвата сигнала;

– большое затухание сигнала по пути (ограничение до 100 м).

2. Экранированная витая пара.

Имеет схожую конструкцию, что и предыдущая, подчиняется тому же 100-метровому ограничению. Обычно содержит в середине четыре или более пары скрученных медных изолированных проводов, а также электрически заземленную плетеную медную сетку или алюминиевую фольгу, создавая экран от внешнего электромагнитного воздействия.

Недостатки:

– кабель менее гибок;

– требует электрического заземления.

2.1.2 Коаксиальный кабель

Этот тип кабеля состоит из центрального медного проводника, более толстого, чем провода в кабеле типа витая пара. Центральный проводник покрыт слоем пенистого пластикового изолирующего материала, который в свою очередь окружен вторым проводником, обычно плетеной медной сеткой или алюминиевой фольгой. Внешний проводник не используется для передачи данных, а выступает как заземление.

Коаксиальный кабель может передавать данные со скорость до 10 Мбит/с на максимальное расстояние от 185 м до 500 м.

Двумя основными типами коаксиального кабеля, используемого в локальных сетях, является «Толстый Ethernet» (Thicknet) и «Тонкий Ethernet» (Thinnet).

Также известен как кабель RG-58, является наиболее используемым. Он наиболее гибок из всех типов коаксиальных кабелей, имеет толщину примерно 6 мм. Он может использоваться для соединения каждого компьютера с другими компьютерами в локальной сети с помощью T–коннектора, British Naval Connector (BNC)-коннектора и 50-Омных заглушек (terminator терминаторов). Используется в основном для сетей типа 10Base-2 Ethernet.

Эта конфигурация поддерживает передачу данных со скорость до 10 Мбит/с на максимальное расстояние до 185 м между повторителями.

Является более толстым и более дорогим коаксиальным кабелем. По конструкции он схож с предыдущим, но менее гибок. Используется как основа для сетей 10Base-5 Ethernet. Этот кабель имеет маркировку RG-8 или RG-11, приблизительно 12 мм в диаметре. Он используется в виде линейной шины. Для подключения к каждой сетевой плате используется специальный внешний трансивер AUI (Attachment unit interface) и «вампир» (ответвление), пронизывающее оболочку кабеля для получения доступа к проводу.

Имеет толстый центральный проводник, который обеспечивает надежную передачу данных на расстояние до 500 м на сегмент кабеля. Часто используется для создания соединительных магистралей. Скорость передачи данных до 10 Мбит/с.

2.1.3 Оптоволоконный кабель

Обеспечивают превосходную скорость передачи информации на большие расстояния. Они не восприимчивы к электромагнитному шуму и подслушиванию.

Он состоит из центрального стеклянного или пластикового проводника, окруженного другим слоем стеклянного или пластикового покрытия, и внешней защитной оболочки. Данные передаются по кабелю с помощью лазерного или светодиодного передатчика, который посылает однонаправленные световые импульсы через центральное стеклянное волокно. Стеклянное покрытие помогает поддерживать фокусировку света во внутреннем проводнике. На другом конце проводника сигнал принимается фотодиодным приемником, преобразующем световые сигналы в электрический сигнал.

Скорость передачи данных для оптоволоконного кабеля достигает от 100 Мбит/с до 2Гбит/с. Данные могут быть надежно переданы на расстояние до 2 км без повторителя.

Световые импульсы двигаются только в одном направлении, поэтому необходимо иметь два проводника: входящий и исходящий кабели.

Этот кабель сложен в установке, является самым дорогим типом кабеля.

2.2 Беспроводные технологии

Методы беспроводной передачи данных являются более удобной формой. Беспроводные технологии различаются по типам сигналов, частоте, расстоянию передачи.

Тремя главными типами беспроводной передачи данных являются: радиосвязь, связь в микроволновом диапазоне, инфракрасная связь.

2.2.1 Радиосвязь

Технологии радиосвязи пересылают данные на радиочастотах и практически не имеет ограничений на дальность. Используется для соединения локальных сетей на больших географических расстояниях.

Недостатки:

– радиопередача имеет высокую стоимость,

– подлежит государственному регулированию,

– крайне чувствительна к электронному или атмосферному влиянию,

– подвержена перехвату, поэтому требует шифрования.

2.2.2 Связь в микроволновом диапазоне

Поддерживает передачу данных в микроволновом диапазоне, использует высокие частоты и применяется как на коротких расстояниях, так и в глобальной коммуникациях.

Ограничение: передатчик и приемник должны быть в зоне прямой видимости друг друга.

Широко используется в глобальной передаче информации с помощью спутников и наземных спутниковых антенн.

2.2.3 Инфракрасная связь

Функционирует на высоких частотах, приближающихся к частотам видимого света. Могут быть использованы для установления двусторонней или широковещательной передачи данных на близкие расстояния. Обычно используют светодиоды для передачи инфракрасных волн приемнику.

Эти волны могут быть физически заблокированы и испытывают интерференцию с ярким светом, поэтому передача ограничена малыми расстояниями.

2.3 Параметры кабелей

При планировании сети или расширении существующей сети необходимо четко рассмотреть несколько вопросов, касающихся кабелей: стоимость, расстояние, скорость передачи данных, легкость установки, количество поддерживаемых узлов.

Сравнение типов кабелей по скорости передачи данных, стоимости кабелей, сложности установки, максимального расстояния передачи данных представлено в таблице 2.1.

Количество узлов на сегмент и узлов в сети при построении сетей с различным использованием кабелей представлено в таблице 2.2.

Таблица 2.1 – Сравнительная характеристика кабелей

Таблица 2.2 – Количество узлов в зависимости от типа сети


3 ОБМЕН ДАННЫХ В СЕТИ

3.1 Общие понятия. Протокол. Стек протоколов.

Главная цель, которая преследуется при соединении компьютеров в сеть – это возможность использования ресурсов каждого компьютера всеми пользователями сети. Для того, чтобы реализовать эту возможность, компьютеры, подсоединенные к сети, должны иметь необходимые для этого средства взаимодействия с другими компьютерами сети.

Задача разделения сетевых ресурсов включает в себя решение множества проблем – выбор способа адресации компьютеров и согласование электрических сигналов при установление электрической связи, обеспечение надежной передачи данных и обработка сообщений об ошибках, формирование отправляемых и интерпретация полученных сообщений, а также много других не менее важных задач.

Обычным подходом при решении сложной проблемы является ее разбиение на несколько частных проблем – подзадач. Для решения каждой подзадачи назначается некоторый модуль. При этом четко определяются функции каждого модуля и правила их взаимодействия.

Частным случаем декомпозиции задачи является многоуровневое представление, при котором все множество модулей, решающих подзадачи, разбивается на иерархически упорядоченные группы – уровни. Для каждого уровня определяется набор функций-запросов, с которыми к модулям данного уровня могут обращаться модули выше лежащего уровня для решения своих задач.

Такой набор функций, выполняемых данным уровнем для выше лежащего уровня, а также форматы сообщений, которыми обмениваются два соседних уровня в ходе своего взаимодействия, называется интерфейсом.

Правила взаимодействия двух машин могут быть описаны в виде набора процедур для каждого из уровней. Такие формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколами.

Согласованный набор протоколов разных уровней, достаточный для организации межсетевого взаимодействия, называется стеком протоколов .

При организации взаимодействия могут быть использованы два основных типа протоколов. В протоколах с установлением соединения (connection-oriented network service, CONS) перед обменом данными отправитель и получатель должны сначала установить логическое соединение, то есть договориться о параметрах процедуры обмена, которые будут действовать только в рамках данного соединения. После завершения диалога они должны разорвать это соединение. Когда устанавливается новое соединение, переговорная процедура выполняется заново.

Вторая группа протоколов - протоколы без предварительного установления соединения (connectionless network service, CLNS). Такие протоколы называются также дейтаграммными протоколами. Отправитель просто передает сообщение, когда оно готово.

3.2 Модель ISO/OSI

Из того, что протокол является соглашением, принятым двумя взаимодействующими объектами, в данном случае двумя работающими в сети компьютерами, совсем не следует, что он обязательно представляет собой стандарт. Но на практике при реализации сетей стремятся использовать стандартные протоколы. Это могут быть фирменные, национальные или международные стандарты.

Международная Организация по Стандартам (International Standards Organization, ISO) разработала модель, которая четко определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какую работу должен делать каждый уровень. Эта модель называется моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью ISO/OSI.

В модели OSI взаимодействие делится на семь уровней или слоев (рис.1). Каждый уровень имеет дело с одним определенным аспектом взаимодействия. Таким образом, проблема взаимодействия декомпозирована на 7 частных проблем, каждая из которых может быть решена независимо от других. Каждый уровень поддерживает интерфейсы с выше- и нижележащими уровнями.

Модель OSI описывает только системные средства взаимодействия, не касаясь приложений конечных пользователей. Приложения реализуют свои собственные протоколы взаимодействия, обращаясь к системным средствам. Следует иметь в виду, что приложение может взять на себя функции некоторых верхних уровней модели OSI, в таком случае, при необходимости межсетевого обмена оно обращается напрямую к системным средствам, выполняющим функции оставшихся нижних уровней модели OSI.

Приложение конечного пользователя может использовать системные средства взаимодействия не только для организации диалога с другим приложением, выполняющимся на другой машине, но и просто для получения услуг того или иного сетевого сервиса.

Итак, пусть приложение обращается с запросом к прикладному уровню, например к файловому сервису. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата, в которое помещает служебную информацию (заголовок) и, возможно, передаваемые данные. Затем это сообщение направляется представительному уровню.

Представительный уровень добавляет к сообщению свой заголовок и передает результат вниз сеансовому уровню, который в свою очередь добавляет свой заголовок и т.д.

Наконец, сообщение достигает самого низкого, физического уровня, который действительно передает его по линиям связи.

Когда сообщение по сети поступает на другую машину, оно последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует, обрабатывает и удаляет заголовок своего уровня, выполняет соответствующие данному уровню функции и передает сообщение вышележащему уровню.

Кроме термина "сообщение" (message) существуют и другие названия, используемые сетевыми специалистами для обозначения единицы обмена данными. В стандартах ISO для протоколов любого уровня используется такой термин как "протокольный блок данных" - Protocol Data Unit (PDU). Кроме этого, часто используются названия кадр (frame), пакет (packet), дейтаграмма (datagram).

3.3 Функции уровней модели ISO/OSI

Физический уровень. Этот уровень имеет дело с передачей битов по физическим каналам, таким, например, как коаксиальный кабель, витая пара или оптоволоконный кабель. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, такие как требования к фронтам импульсов, уровням напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

Канальный уровень. Одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму, суммируя все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.

В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологией связей, именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

Сетевой уровень. Этот уровень служит для образования единой транспортной системы, объединяющей несколько сетей с различными принципами передачи информации между конечными узлами.

Сообщения сетевого уровня принято называть пакетами (packets). При организации доставки пакетов на сетевом уровне используется понятие "номер сети". В этом случае адрес получателя состоит из номера сети и номера компьютера в этой сети.

Для того, чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач (hops) между сетями, каждый раз выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет.

Проблема выбора наилучшего пути называется маршрутизацией и ее решение является главной задачей сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту, оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени.

На сетевом уровне определяется два вида протоколов. Первый вид относится к определению правил передачи пакетов с данными конечных узлов от узла к маршрутизатору и между маршрутизаторами. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. К сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией. С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений. Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

Транспортный уровень. На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня заключается в том, чтобы обеспечить приложениям или верхним уровням стека - прикладному и сеансовому - передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализуются программными средствами конечных узлов сети - компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно привести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

Сеансовый уровень. Сеансовый уровень обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, вместо того, чтобы начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется.

Уровень представления. Этот уровень обеспечивает гарантию того, что информация, передаваемая прикладным уровнем, будет понятна прикладному уровню в другой системе. При необходимости уровень представления выполняет преобразование форматов данных в некоторый общий формат представления, а на приеме, соответственно, выполняет обратное преобразование. Таким образом, прикладные уровни могут преодолеть, например, синтаксические различия в представлении данных. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных сервисов. Примером протокола, работающего на уровне представления, является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.

Прикладной уровень. Прикладной уровень - это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message).

Существует очень большое разнообразие протоколов прикладного уровня. Приведем в качестве примеров хотя бы несколько наиболее распространенных реализаций файловых сервисов: NCP в операционной системе Novell NetWare, SMB в Microsoft Windows NT, NFS, FTP и TFTP, входящие в стек TCP/IP.

3.4 Протоколы взаимодействия приложений и протоколы транспортной подсистемы

Функции всех уровней модели OSI могут быть отнесены к одной из двух групп: либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.

Три нижних уровня - физический, канальный и сетевой - являются сетезависимыми, то есть протоколы этих уровней тесно связаны с технической реализацией сети, с используемым коммуникационным оборудованием.

Три верхних уровня - сеансовый, уровень представления и прикладной - ориентированы на приложения и мало зависят от технических особенностей построения сети. На протоколы этих уровней не влияют никакие изменения в топологии сети, замена оборудования или переход на другую сетевую технологию.

Транспортный уровень является промежуточным, он скрывает все детали функционирования нижних уровней от верхних уровней. Это позволяет разрабатывать приложения, независящие от технических средств, непосредственно занимающихся транспортировкой сообщений.

Рисунок 2 показывает уровни модели OSI, на которых работают различные элементы сети.

Компьютер, с установленной на нем сетевой ОС, взаимодействует с другим компьютером с помощью протоколов всех семи уровней. Это взаимодействие компьютеры осуществляют через различные коммуникационные устройства: концентраторы, модемы, мосты, коммутаторы, маршрутизаторы, мультиплексоры. В зависимости от типа, коммуникационное устройство может работать либо только на физическом уровне (повторитель), либо на физическом и канальном (мост и коммутатор), либо на физическом, канальном и сетевом, иногда захватывая и транспортный уровень (маршрутизатор).

3.5 Функциональное соответствие видов коммуникационного оборудования уровням модели OSI

Лучшим способом для понимания отличий между сетевыми адаптерами, повторителями, мостами/коммутаторами и маршрутизаторами является рассмотрение их работы в терминах модели OSI. Соотношение между функциями этих устройств и уровнями модели OSI показано на рисунке 3.

Повторитель, который регенерирует сигналы, за счет чего позволяет увеличивать длину сети, работает на физическом уровне.

Сетевой адаптер работает на физическом и канальном уровнях. К физическому уровню относится та часть функций сетевого адаптера, которая связана с приемом и передачей сигналов по линии связи, а получение доступа к разделяемой среде передачи, распознавание МАС-адреса компьютера - это уже функция канального уровня.

Мосты выполняют большую часть своей работы на канальном уровне. Для них сеть представляется набором МАС-адресов устройств. Они извлекают эти адреса из заголовков, добавленных к пакетам на канальном уровне, и используют их во время обработки пакетов для принятия решения о том, на какой порт отправить тот или иной пакет. Мосты не имеют доступа к информации об адресах сетей, относящейся к более высокому уровню. Поэтому они ограничены в принятии решений о возможных путях или маршрутах перемещения пакетов по сети.

Маршрутизаторы работают на сетевом уровне модели OSI. Для маршрутизаторов сеть - это набор сетевых адресов устройств и множество сетевых путей. Маршрутизаторы анализируют все возможные пути между любыми двумя узлами сети и выбирают самый короткий из них. При выборе могут приниматься во внимание и другие факторы, например, состояние промежуточных узлов и линий связи, пропускная способность линий или стоимость передачи данных.

Для того, чтобы маршрутизатор мог выполнять возложенные на него функции ему должна быть доступна более развернутая информация о сети, нежели та, которая доступна мосту. В заголовке пакета сетевого уровня кроме сетевого адреса имеются данные, например, о критерии, который должен быть использован при выборе маршрута, о времени жизни пакета в сети, о том, какому протоколу верхнего уровня принадлежит пакет.

Благодаря использованию дополнительной информации, маршрутизатор может осуществлять больше операций с пакетами, чем мост/коммутатор. Поэтому программное обеспечение, необходимое для работы маршрутизатора, является более сложным.

На рисунке 3 показан еще один тип коммуникационных устройств - шлюз, который может работать на любом уровне модели OSI. Шлюз (gateway) - это устройство, выполняющее трансляцию протоколов. Шлюз размещается между взаимодействующими сетями и служит посредником, переводящим сообщения, поступающие из одной сети, в формат другой сети. Шлюз может быть реализован как чисто программными средствами, установленными на обычном компьютере, так и на базе специализированного компьютера. Трансляция одного стека протоколов в другой представляет собой сложную интеллектуальную задачу, требующую максимально полной информации о сети, поэтому шлюз использует заголовки всех транслируемых протоколов.

3.6 Спецификация IEEE 802

Примерно в то же время, когда появилась модель OSI, была опубликована спецификация IEEE 802, которая фактически расширяет сетевую модель OSI. Это расширение происходит на канальном и физическом уровнях, которые определяют как более чем один компьютер может получить доступ к сети, избежав конфликтов с другими компьютерами сети.

Этот стандарт детализирует эти уровни посредством разбиения канального уровня на 2 подуровня:

– Logical Link Control (LLC) – подуровень управления логической связью. Управляет связями между каналами данных и определяет использование точек логического интерфейса, называемых Services Access Point (Точки доступа у службам), которые другими компьютерами могут использоваться для передачи информации на верхние уровни модели OSI;

– Media Access Control (MAC) – подуровень управления доступом к устройствам. Предоставляет параллельный доступ для нескольких сетевых адаптеров на физическом уровне, имеет прямое взаимодействие с сетевой картой компьютера и отвечает за обеспечение безошибочной передачи данных между компьютерами в сети.

3.7 По стеку протоколов

Набор протоколов (или стек протоколов) представляет собой сочетание протоколов, которые совместно работают для обеспечения сетевого взаимодействия. Эти наборы протоколов обычно разбивают на три группы, соответствующие сетевой модели OSI:

– сетевые;

– транспортные;

– прикладные.

Сетевые протоколы предоставляют следующие услуги:

– адресацию и маршрутизацию информации;

– проверку на наличие ошибок;

– запрос повторной передачи;

– установление правил взаимодействия в конкретной сетевой среде.

Популярные сетевые протоколы:

– DDP (Delivery Datagram Protocol – Протокол доставки дейтаграмм). Протокол передачи данных Apple, используемый в AppleTalk.

– IP (Internet Protocol – Протокол Интернет). Часть набора протоколов TCP/IP, обеспечивающая адресную информацию и информацию о маршрутизации.

– IPX (Internetwork Packet eXchange – Межсетевой обмен пакетами) и NWLink. Протокол сетей Novell NetWare (и реализация этого протокола фирмой Microsoft), используемый для маршрутизации и направления пакетов.

– NetBEUI. Разработанный совместно IBM и Microsoft, этот протокол обеспечивает транспортные услуги для NetBIOS.

Транспортные протоколы отвечают за обеспечение надежной транспортировки данных между компьютерами.

Популярные транспортные протоколы:

– ATP (AppleTalk Transaction Protocol – Транзакционный протокол AppleTalk) и NBP (Name Binding Protocol – Протокол связывания имен). Сеансовый и транспортный протоколы AppleTalk.

– NetBIOS/NetBEUI. Первый – устанавливает соединение между компьютерами, а второй – предоставляет услуги передачи данных для этого соединения.

– SPX (Sequenced Packet exchange – Последовательный обмен пакетами) и NWLink. Ориентированный на соединения протокол Novell, используемый для обеспечения доставки данных (и реализация этого протокола фирмой Microsoft).

– TCP (Transmission Control Protocol – Протокол управления передачей). Часть набора протоколов TCP/IP, отвечающая за надежную доставку данных.

Прикладные протоколы, ответственные за взаимодействие приложений.

Популярные прикладные протоколы:

– AFP (AppleTalk File Protocol – Файловій протокол AppleTalk). Протокол удаленного управления файлами Macintosh.

– FTP (File Transfer Protocol – Протокол передачи данных). Еще один член набора протоколов TCP/IP, используемый для обеспечения услуг по передаче файлов.

– NCP (NetWare Core Protocol – Базовый протокол NetWare). Оболочка и редиректоры клиента Novell.

– SMTP (Simple Mail Transport Protocol – Простой протокол передачи почты). Член набора протоколов TCP/IP, отвечающий за передачу электронной почты.

– SNMP (Simple Network Management Protocol – Простой протокол управления сетью). Протокол TCP/IP, используемый для управления и наблюдения за сетевыми устройствами.


4 СЕТЕВОЕ ОБОРУДОВАНИЕ И ТОПОЛОГИИ

4.1 Сетевые компоненты

Существует множество сетевых устройств, которые можно использовать для создания, сегментирования и усовершенствования сети.

4.1.1 Сетевые карты

Сетевой адаптер (Network Interface Card, NIC ) - это периферийное устройство компьютера, непосредственно взаимодействующее со средой передачи данных, которая прямо или через другое коммуникационное оборудование связывает его с другими компьютерами. Это устройство решает задачи надежного обмена двоичными данными, представленными соответствующими электромагнитными сигналами, по внешним линиям связи. Как и любой контроллер компьютера, сетевой адаптер работает под управлением драйвера операционной системы.

В большинстве современных стандартов для локальных сетей предполагается, что между сетевыми адаптерами взаимодействующих компьютеров устанавливается специальное коммуникационное устройство (концентратор, мост, коммутатор или маршрутизатор), которое берет на себя некоторые функции по управлению потоком данных.

Сетевой адаптер обычно выполняет следующие функции:

Оформление передаваемой информации в виде кадра определенного формата. Кадр включает несколько служебных полей, среди которых имеется адрес компьютера назначения и контрольная сумма кадра.

Получение доступа к среде передачи данных . В локальных сетях в основном применяются разделяемые между группой компьютеров каналы связи (общая шина, кольцо), доступ к которым предоставляется по специальному алгоритму (наиболее часто применяются метод случайного доступа или метод с передачей маркера доступа по кольцу).

Кодирование последовательности бит кадра последовательностью электрических сигналов при передаче данных и декодирование при их приеме. Кодирование должно обеспечить передачу исходной информацию по линиям связи с определенной полосой пропускания и определенным уровнем помех таким образом, чтобы принимающая сторона смогла распознать с высокой степенью вероятности посланную информацию.

Преобразование информации из параллельной формы в последовательную и обратно. Эта операция связана с тем, что в вычислительных сетях информация передается в последовательной форме, бит за битом, а не побайтно, как внутри компьютера.

Синхронизация битов, байтов и кадров. Для устойчивого приема передаваемой информации необходимо поддержание постоянного синхронизма приемника и передатчика информации.

Сетевые адаптеры различаются по типу и разрядности используемой в компьютере внутренней шины данных - ISA, EISA, PCI, MCA.

Сетевые адаптеры различаются также по типу принятой в сети сетевой технологии - Ethernet, Token Ring, FDDI и т.п. Как правило, конкретная модель сетевого адаптера работает по определенной сетевой технологии (например, Ethernet).

В связи с тем, что для каждой технологии сейчас имеется возможность использования различных сред передачи, сетевой адаптер может поддерживать как одну, так и одновременно несколько сред. В случае, когда сетевой адаптер поддерживает только одну среду передачи данных, а необходимо использовать другую, применяются трансиверы и конверторы.

Трансивер (приемопередатчик, transmitter+receiver) - это часть сетевого адаптера, его оконечное устройство, выходящее на кабель. В вариантах Ethernet"а оказалось удобным выпускать сетевые адаптеры с портом AUI, к которому можно присоединить трансивер для требуемой среды.

Вместо подбора подходящего трансивера можно использовать конвертор , который может согласовать выход приемопередатчика, предназначенного для одной среды, с другой средой передачи данных (например, выход на витую пару преобразуется в выход на коаксиальный кабель).

4.1.2 Повторители и усилители

Как говорилось ранее, сигнал при перемещении по сети, ослабевает. Чтобы предотвратить это ослабление, можно использовать повторители и (или) усилители, которые усиливают сигнал, проходящий через них.

Повторители (repeater) используются в сетях с цифровым сигналом для борьбы с затуханием (ослаблением) сигнала. Когда репитер получает ослабленный сигнал, он очищает этот сигнал, усиливает и посылает следующему сегменту.

Усилители (amplifier), хоть и имеют схожее назначение, используются для увеличения дальности передачи в сетях, использующих аналоговый сигнал. Это называется широкополосной передачей. Носитель делится на несколько каналов, так что разные частоты могут передаваться параллельно.

Обычно сетевая архитектура определяет максимальное количество повторителей, которые могут быть установлены в отдельной сети. Причиной этого является феномен, известный как «задержка распространения». Период, требуемый каждому повторителю для очистки и усиления сигнала, умноженный на число повторителей, может приводить к заметным задержкам передачи данных по сети.

4.1.3 Концентраторы

Концентратор (HUB) представляет собой сетевое устройство, действующее на физическом уровне сетевой модели OSI, служащее в качестве центральной точки соединения и связующей линии в сетевой конфигурации «звезда».

Существует три основных типа концентраторов:

– пассивные (passive);

– активные (active);

– интеллектуальные (intelligent).

Пассивные концентраторы не требуют электроэнергии и действуют как физическая точка соединения, ничего не добавляя к проходящему сигналу).

Активные требуют энергию, которую используют для восстановления и усиления сигнала.

Интеллектуальные концентраторы могут предоставлять такие сервисы, как переключение пакетов (packet switching) и перенаправление трафика (traffic riuting).

4.1.4 Мосты

Мост (bridge) представляет собой устройство, используемое для соединения сетевых сегментов. Мосты можно рассматривать как усовершенствование повторителей, так как они уменьшают загрузку сети: мосты считывают адрес сетевой карты (MAC address) компьютера-получателя из каждого входящего пакета данных и просматривают специальные таблицы, чтобы определить, что делать с пакетом.

Мост функционирует на канальном уровне сетевой модели OSI.

Мост функционирует как повторитель, он получает данные из любого сегмента, но он более разборчив, чем повторитель. Если получатель находится в том же физическом сегменте, что и мост, то мост знает, что пакет больше не нужен. Если получатель находится в другом сегменте, мост знает, что пакет надо переслать.

Эта обработка позволяет уменьшить загрузку сети, поскольку сегмент не будет получать сообщений, которые к нему не относятся.

Мосты могут соединять сегменты, которые используют разные типы носителей (10BaseT, 10Base2), а также с разными схемами доступа к носителю (Ethernet, Token Ring).

4.1.5 Маршрутизаторы

Маршрутизатор (router) представляет собой сетевое коммуникационное устройство, работающее на сетевом уровне сетевой модели, и может связывать два и более сетевых сегментов (или подсетей).

Он функционирует подобно мосту, но для фильтрации трафика он использует не адрес сетевой карты компьютера, а информацию о сетевом адресе, передаваемую в относящейся к сетевому уровню части пакета.

После получения этой информации маршрутизатор использует таблицу маршрутизации, чтобы определить, куда направить пакет.

Существует два типа маршрутизирующих устройств: статические и динамические. Первые используют статическую таблицу маршрутизации, которую должен создавать и обновлять сетевой администратор. Вторые – создают и обновляют свои таблицы сами.

Маршрутизаторы могут уменьшить загрузку сети, увеличить пропускную способность, а также повысить надежность доставки данных.

Маршрутизатором может быть как специальное электронное устройство, так и специализированный компьютер, подключенный к нескольким сетевым сегментам с помощью нескольких сетевых карт.

Он может связывать несколько небольших подсетей, использующих различные протоколы, если используемые протоколы поддерживают маршрутизацию. Маршрутизируемые протоколы обладают способностью перенаправлять пакеты данных в другие сетевые сегменты (TCP/IP, IPX/SPX). Не маршрутизируемый протокол – NetBEUI. Он не может работать за пределами своей собственной подсети.

4.1.6 Шлюзы

Шлюз (gateway) представляет собой метод осуществления связи между двумя и более сетевыми сегментами. Позволяет взаимодействовать несходным системам в сети (Intel и Macintosh).

Другой функцией шлюзов является преобразование протоколов. Шлюз может получить протокол IPX/SPX, направленный клиенту, использующему протокол TCP/IP, на удаленном сегменте. Шлюз преобразует исходный протокол в требуемый протокол получателя.

Шлюз функционирует на транспортном уровне сетевой модели.

4.2 Типы сетевой топологии

Под топологией сети понимается описание ее физического расположения, то есть то, как компьютеры соединены в сети друг с другом и с помощью каких устройств входят в физическую топологию.

Существует четыре основных топологии:

– Bus (шина);

– Ring (кольцо);

– Star (звезда);

– Mesh (ячейка).

Физическая топология шина, именуемая также линейной шиной, состоит из единственного кабеля, к которому присоединены все компьютеры сегмента (рис. 4.1).

Сообщения посылаются по линии всем подключенным станциям вне зависимости от того, кто является получателем. Каждый компьютер про­веряет каждый пакет в проводе, чтобы определить получателя пакета. Если пакет предназначен для другой станции, то компьютер отвергает его. Если пакет предназначен данному компьютеру, то он получит и обработает его.

Рисунок 4.1 – Топология «шина»

Главный кабель шины, известный как магистраль, имеет на обоих концах заглушки (терминаторы) для предотвращения отражения сигнала. Обычно в сетях с шинной топологией используется два типа носителя: толстый и тонкий Ethernet.

Недостатки:

– трудно изолировать неполадки станции или другого сетевого компонента;

– неполадки в магистральном кабеле могут привести к выходу из строя всей сети.

4.2.2 Кольцо

Топология Ring (кольцо) используется в основном в сетях Token Ring и FDDI (волоконно-оптических).

В физической топологии «кольцо» линии передачи данных фактически образуют логическое кольцо, к которому подключены все компьютеры сети (рис. 4.2).

Рисунок 4.2 – Топология «кольцо»

Доступ к носителю в кольце осуществляется посредством маркеров (token), которые пускаются по кругу от станции к станции, давая им возможность переслать пакет, если это нужно. Компьютер может посылать данные только тогда, когда владеет маркером.

Так как каждый компьютер при этой топологии является частью кольца, он имеет возможность пересылать любые полученные им пакеты данных, адресованные другой станции.

Недостатки:

– неполадки на одной станции могут привести к отказу всей сети;

– при переконфигурации любой части сети необходимо временно отключать всю сеть.

4.2.3 Звезда

В топологии Star (звезда) все компьютеры в сети соединены друг с другом с помощью центрального концентратора (рис. 4.3).

Все данные, которые посылает станция, направляются прямо на концентратор, который пересылает пакет в направлении получателя.

В этой топологии только один компьютер может посылать данные в конкретный момент времени. При одновременной попытке двух и более компьютеров переслать данные, все они получат отказ и будут вынуждены ждать случайный интервал времени, чтобы повторить попытку.

Эти сети лучше масштабируются, чем другие сети. Неполадки на одной станции не выводят из строя всю сеть. Наличие центрального концентратора облегчает добавление нового компьютера.

Недостатки:

– требует больше кабеля, чем остальные топологии;

– выход из строя концентратора выведет из строя весь сегмент сети.

Рисунок 4.3 – Топология «звезда»

Топология Mesh (ячейка) соединяет все компьютеры попарно (рис. 4.4).

Рисунок 4.4 – Топология «ячейка»

Сети Mesh используют значительно большее количество кабеля, чем другие топологии. Эти сети значительно труднее устанавливать. Но эти сети устойчивы к сбоям (способны работать при наличии повреждений).

4.2.5 Смешанные топологии

На практике существует множество комбинаций главных сетевых топологий. Рассмотрим основные из них.

Star Bus

Смешанная топология Star Bus (звезда на шине) объединяет топологии Шина и Звезда (рис. 4.5).

Топология Star Ring (звезда на кольце) известна также под названием Star-wired Ring, поскольку сам концентратор выполнен как кольцо.

Эта сеть идентична топологии «звезда», но на самом деле концентратор соединен проводами как логическое кольцо.

Также как и в физическом кольце, в этой сети посылаются маркеры для определения порядка передачи данных компьютерами.

Рисунок 4.5 – Топология «звезда на шине»

Hybrid Mesh

Поскольку реализация настоящей топологии Mesh в крупных сетях может быть дорогой, сеть топологии Hybrid Mesh может предоставить некоторые из существенных преимуществ настоящей сети Mesh.

В основном применяется для соединения серверов, хранящих критически важные данные (рис. 4.6).

Рисунок 4.6 – Топология «гибридная ячейка»


5 ГЛОБАЛЬНАЯ СЕТЬ ИНТЕРНЕТ

5.1 Теоретические основы Интернета

Ранние эксперименты по передаче и приему информации с помощью компьютеров начались еще в 50-х годах и имели лабораторный характер. Лишь в конце 60-х годов на средства Агентства Перспективных Разработок министерства обороны США была создана сеть национального масштаба . Она получила название ARPANET . Эта сеть связывала несколько крупных научных, исследовательских и образовательных центров. Ее основной задачей была координация групп коллективов, работающих над едиными научно-техническими проектами, а основным назначением стал обмен электронной почтой файлами с научной и проектно-конструкторской документацией.

Сеть ARPANET заработала в 1969 году. Немногочисленные узлы, входившие в нее в то время, были связаны выделенными линиями. Прием и передача информации обеспечивались программами, работающими на узловых компьютерах. Сеть посте­пенно расширялась за счет подключения новых узлов, а к началу 80-х годов на базе наиболее крупных узлов были созданы свои региональные сети, воссоздающие общую архитектуру ARPANET на более низком уровне (в региональном или локаль­ном масштабе).

По-настоящему рождением Интернета принято считать 1983 год. В этом году произошли революционные изменения в программном обеспечении компьютерной связи. Днем рождения Интернета в совре­менном понимании этого слова стала дата стандартизации протокола связи TCP/IP, лежащего в основе Всемирной сети по нынешний день.

TCP/IP - это не один сетевой протокол, а несколько протоколов, лежащих на разных уровнях сетевой модели OSI (это так называемый стек протоколов). Из них протокол TCP - протокол транспортного уровня. Он управляет тем, как происходит передача информации. Протокол IP- адресный. Он принадле­жит сетевому уровню и определяет, куда происходит передача.