Общие тенденции совершенствования средств вычислительной техники. История и тенденции развития вычислительной техники

Курсовая работа по теме:

ЭТАПЫ И ТЕНДЕНЦИИ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ


Введение

Глава 1. Информатизация общества

1.2 Информационная культура человека

Глава 2. Поколения ЭВМ. Классификация современных компьютеров по функциональным возможностям

2.1 Краткая история докомпьютерной эпохи

2.2 Открытия, предшествующие созданию компьютеров

2.3 Поколения ЭВМ

2.3.1 ЭВМ первого поколения

2.3.2 ЭВМ второго поколения

2.3.3 ЭВМ третьего поколения

2.3.4 ЭВМ четвертого поколения

2.3.5 ЭВМ пятого поколения

2.4 Тенденции развития вычислительной техники. Компьютер будущего

Глава 3. Информационные технологии

3.1 Информационные технологии. Определение, цель и основные свойства

3.2 Развитие информационных технологий

Заключение

Литература


Введение

На протяжении всей истории человечество овладело сначала веществом, затем энергией и, наконец, информацией. На заре цивилизации человеку хватало элементарных знаний и первобытных навыков, но постепенно объем информации увеличивался, и люди почувствовали недостаток индивидуальных знаний. Потребовалось научиться обобщать знания и опыт, которые способствовали правильной обработке информации и принятию необходимых решений, иными словами, необходимо было научиться целенаправленно работать с информацией и использовать для ее получения, обработки и передачи компьютерную информационную технологию. Усложнение индустриального производства, социальной, экономической и политической жизни, изменение динамики процессов во всех сферах деятельности человека привели, с одной стороны, к росту потребностей в знаниях, а с другой - к созданию новых средств и способов удовлетворения этих потребностей. В современном обществе к общей культуре человека добавилась еще одна категория – информационная.

Мир сейчас находится на пороге информационного общества. Началом такого перехода стало внедрение в различные сферы деятельности человека современных средств обработки и передачи информации. Переход от индустриального общества к информационному осуществляется благодаря информатизации общества – процессу, при котором создаются условия, удовлетворяющие потребности любого человека в получении необходимой информации. Основную роль, в информационном обществе, будет играть система распространения, хранения и обработки информации, образуя информационную среду, которая может обеспечить любому человеку доступ ко всей информации.

Новые технологии являются главной движущей силой в дополнение к существующим силам мирового рынка. Всего несколько ключевых компонентов - микропроцессоры, локальные сети, робототехника, специализированные АРМ, датчики, программируемые контроллеры - превратили в реальность концепцию автоматизированного предприятия.

В XXI веке образованный человек – это человек, хорошо владеющий информационными технологиями. Ведь деятельность людей все в большей степени зависит от их информированности, способности эффективно использовать информацию. Для свободной ориентации в информационных потоках современный специалист любого профиля должен уметь получать, обрабатывать и использовать информацию с помощью компьютеров, телекоммуникаций и других средств связи. Об информации начинают говорить как о стратегическом ресурсе общества, как о ресурсе, определяющем уровень развития государства. Уже сейчас при приеме на работу соискателям предъявляются требования по владению персональным компьютером и основными прикладными программами. Можно сделать вывод, что в современных условиях информационные технологии становятся эффективным инструментом совершенствования управления предприятием, особенно в таких областях управленческой деятельности, как стратегическое управление, управление качеством продукции и услуг, маркетинг, делопроизводство, управление персоналом.

Цель работы: изучив доступные источники информации, выяснить основные этапы и тенденции в развитии вычислительной техники и информационных технологий. Знание истории всегда помогает понимать новое, тем более при современном темпе развития информационных технологий. Для решения поставленной цели необходимо:

1. кратко изучить историю докомпьтерной эпохи и познакомиться с открытиями предшествующими появлению ЭВМ;

2. рассмотреть поколения ЭВМ и их отличительные особенности;

3. познакомится с основными тенденциями в развитии компьютерной техники;

4. выяснить смысл понятия «информационные технологии»;

5. кратко рассмотреть этапы развития информационного общества, его информатизацию

6. выяснить основные тенденции в развитии информационных технологий.


Глава 1. Информатизация общества

1.1 Этапы развития информационного общества. Его информатизация

В развитии человечества существуют четыре этапа, названные информационными революциями, которые внесли изменения в его развитие.

Первая – связана с изобретением письменности. Это обусловило качественный гигантский и количественный скачек в развитии общества. Знания стало возможно накапливать и передавать последующим поколениям, т.е. появились средства и методы накопления информации. В некоторых источниках считается, что содержание первой информационной революции составляет распространение и внедрение в деятельность и сознание человека языка.

Вторая (середина XVI века) – изобретение книгопечатания. Это дало в руки человечеству новый способ хранения информации, а так же сделало более доступным культурные ценности.

Третья (конец XIX века) – изобретение электричества. Появились телеграф, телефон и радио, позволяющие быстро передавать и накапливать информацию в любом объеме. Появились средства информационных коммуникаций.

Четвертая (70-е годы ХХ века) – изобретение микропроцессорной технологии и персональных компьютеров. Толчком к этой революции послужило создание в середине 40-х годов ЭВМ. Эта последняя революция дала толчок человеческой цивилизации для переходы от индустриального к информационному обществу- обществу, в котором большинство работающих занято производством, хранением, переработкой и реализацией информации, особенно высшей ее формой – знанием. Началом этого послужило внедрение в различные сферы деятельности человека современных средств обработки и передачи информации – этот процесс называется информатизацией.

Информатизация общества – процесс, при котором создаются условия, удовлетворяющие потребностям любого человека в получении необходимой информации (по закону РФ «Об информации, информатизации и защите информации» от 25 января, 1995 года).

До недавнего времени вместо термина «информатизация» использовался «компьютеризация», который означал развитие и внедрение компьютеров. Но информатизация общества является более широким понятием, так как сегодня главным являются не столько технические средства, сколько сущности и цели социально-технического процесса в целом. Компьютеры являются только частью процесса информатизации общества – ее базовой технической составляющей.

Основные черты информационного общества:

1. Увеличение объема информации приводит к тому, что человек сам не способен ее обработать, для этого ему необходимо использовать специальные технические устройства – компьютеры.

2. Движущей силой общества станет производство информационного продукта. Во второй половине ХХ века появился новый социальный слой «белые воротнички» - люди, не производящие непосредственно материальные ценности, а занятые обработкой информации.

3. Увеличится доля умственного труда, так как продуктом производства в информационного общества станут знания и интеллект.

4. Произойдет переоценка ценностей, уклада жизни и изменится культурный досуг. Уже сейчас компьютерные игры занимают большую часть свободного времени человека. Сейчас все большее распространение получают сетевые игры. Растет время проведенной в Интернете, здесь можно «путешествовать» по образовательным сайтам, виртуальным музеям, читать книги, общаться.

5. Будет развиваться компьютерная техника, компьютерные сети, информационные технологии.

6. Появятся новые электронные компьютеризированные бытовые приборы. Предполагается, что дома будут оснащаться единым информационным кабелем, который возьмет на себя все информационные связи, включая каналы кабельного телевидения и выход в Интернет. Специальный электронный блок будет контролировать всю бытовую технику.

7. Производством энергии и материального продукта будут заниматься машины, а человек главным образом обработкой информации.

8. В сфере образования будет создана система непрерывного образования.

9. Появится, и будет развиваться рынок информационных услуг.

Информационное общество кроме всех перечисленных выше благ несет для человека и множество этических и правовых проблем. К некоторым из них можно отнести:

- «информационные войны»;

Информационное неравенство;

Психологические проблемы связанные с виртуальной реальностью;

Сложность выбора качественной и достоверной информации из большого объема

В связи с переходом к информационному обществу к общей культуре человека добавилась – информационная культура. Которая характеризует умение человека целенаправленно работать с информацией и использовать ее для получения, обработки и передачи компьютерную информационную технологию, современные технические средства и методы.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Кафедра ТПО

РЕФЕРАТ

По Информатике и вычислительной технике

«Тенденции и перспективы развития информатики и вычислительной техники»


Введение

1. Тенденции развития вычислительных систем

2. Тенденции развития информатики

Заключение

Список литературы


Введение

Появление и развитие электронной вычислительной техники во второй половине ХХ века оказало и продолжает оказывать огромное влияние на мировое общество и мировую экономику. Значимость информационных технологий на основе компьютеризации носит глобальный характер. Их воздействие касается государственных структур и институтов гражданского общества, экономической и социальной сфер, науки и образования, культуры и образа жизни людей.

В наше время жизнь каждого отдельного человека и всего социума в целом тесно связана с компьютером. Электронно-вычислительная техника всё шире входит во все сферы нашей жизни. Компьютер стал привычным не только в производственных целях и научных лабораториях, но и в студенческих аудиториях и школьных классах. Непрерывно растёт число специалистов, работающих с персональным компьютером, который становится их основным рабочим инструментом. Ни экономические, ни научные достижения невозможны теперь без быстрой и четкой информационной связи и без специального обученного персонала.

В продолжение всей истории вычислительной техники дискутируется проблема специализации средств вычислительной техники (СВТ) и вычислительных систем (ВС) в постановке: альтернатива это или дополнение к направлению развития универсальных компьютерных систем. Станет ли «универсальная» ВС «специализированной», если в ее состав будет включен, например, специализированный процессор? Вместе с тем, любая конкретная универсальная ВС ограничена сферой своего целевого назначения и вследствие этого приобретает свойства специализированности (по крайней мере, на уровне прикладного программного обеспечения).

Академик В.М. Глушков подчеркивал: «… требования увеличения эффективности оборудования, а также упрощения программирования и облегчения общения с человеком ведут к специализации процессоров, хотя каждый из таких специализированных процессоров будет оставаться алгоритмически универсальным и потому в принципе пригодным и для других применений»

Кроме того, успешная реализация ряда современных проектов, связанных с разработкой и производством современных военных систем, позволяет говорить о серьезном прорыве в традиционных подходах к формированию технической и бизнес-политики создания компьютерных систем. Основу этого прорыва составляет то, что для реализации военных проектов широко использованы готовые аппаратные и программные технологии открытого типа, ранее широко апробированные и стандартизированные на рынке общепромышленных гражданских приложений. Это так называемые COTS-технологии (Commercial Off-The-Shelf – «готовые к использованию»). Нормативная база COTS-технологий развивается и поддерживается как в рамках международных (IEC/МЭК, ISO) и национальных (ANSI, DIN, IEEE, ГОСТ) организаций по стандартизации, так и в рамках крупных профессиональных консорциумов (ARINC, PCISIG, VITA, PICMG, Group IPC и т.д.). Стандартизация ведется совместными усилиями большого числа конкурирующих компаний: Motorola, HP, IBM, Sun, производящих совместимую серийную технику.

развитие вычислительная система информатика


Тенденции развития вычислительных систем

Информатика и её практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Её технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Можно утверждать, что история вычислительной техники уникальна, прежде всего, фантастическими темпами развития аппаратных и программных средств. В последнее время идет активный рост слияния компьютера, средств связи и бытовых приборов в единый набор. Будут создаваться новые системы, размещенные на одной интегральной схеме и включающие кроме самого процессора и его окружения, еще и программное обеспечение.

Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер применения ЭВМ и, как следствие, переход от отдельных машин к их системам – вычислительным системам и комплексам разнообразных конфигураций с широким диапазоном функциональных возможностей и характеристик.

Наиболее перспективные, создаваемые на основе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы – вычислительные сети – ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные услуги: электронную почту, системы телеконференций и информационно-справочные системы.

Специалисты считают, что в первой четверти XXI в. в цивилизованных странах произойдет смена основной информационной среды. Удельные объемы информации, получаемой обществом по традиционным информационным каналам (радио, телевидение, печать) станут катастрофически малы по сравнению с объемами получаемой информации посредством компьютерных сетей.

Прогнозируется дальнейший рост массового производства и распространения персональных ЭВМ, встраиваемых микропроцессоров, создания глобальных и региональных сетей обмена информацией. Примером здесь является развитие сети Internet.

Уже сегодня пользователям глобальной сети Internet стала доступной практически любая находящаяся в хранилищах знаний этой сети не конфиденциальная информация.

Электронная почта Internet позволяет получить почтовое отправление из любой точки Земного шара (где есть терминалы этой сети) через 5 с, а не через неделю или месяц, как это имеет место при использовании обычной почты.

В Массачусетском университете (США) создана электронная книга, куда можно записывать любую информацию из сети; читать эту книгу можно, отключившись от сети, автономно, в любом месте. Сама книга в твердом переплете, содержит тонкие жидкокристаллические индикаторы – страницы с бумагообразной синтетической поверхностью и высоким качеством "печати".

При разработке и создании собственно ЭВМ существенный и устойчивый приоритет в последние годы имеют сверхмощные компьютеры – суперЭВМ и миниатюрные, и сверхминиатюрные ПК. Ведутся, как уже указывалось, поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, – нейрокомпьютеров. В частности, в нейрокомпьютерах могут использоваться уже имеющиеся специализированные сетевые МП – транспьютеры.

Транспьютер – микропроцессор сети со встроенными средствами связи. Например, транспьютер IMS T 800 при тактовой частоте 30 МГц имеет быстродействие 15 млн. оп/с (операций в сек.), а транспьютер Intel WARP при тактовой частоте 20 МГц – 20 млн. оп/с (оба транспьютера 32-разрядные).

Ближайшие прогнозы по созданию отдельных устройств ЭВМ:

1. Микропроцессоры с быстродействием 1000 MIPS (MIPS - скорость операций в единицу времени) и встроенной памятью 16 Мбайт.

2. Встроенные сетевые и видеоинтерфейсы;

3. Плоские (толщиной 3-5 мм) крупноформатные дисплеи с разрешающей способностью 1000x800 пикселей и более;

4. Портативные, размером со спичечный коробок, магнитные диски емкостью более 100 Гбайт. Терабайтные дисковые массивы на их основе сделают практически ненужным стирание старой информации.

Повсеместное использование мультиканальных широкополосных радио-, волоконно-оптических, а в пределах прямой видимости и инфракрасных каналов обмена информацией между компьютерами обеспечит практически неограниченную пропускную способность (трансфер до сотен миллионов байт в секунду).

Широкое внедрение средств мультимедиа, в первую очередь аудио- и видеосредств ввода и вывода информации, позволит общаться с компьютером на естественном языке. Мультимедиа нельзя трактовать узко, только как мультимедиа на ПК. Можно говорить о бытовом (домашнем) мультимедиа, включающем в себя и ПК, и целую группу потребительских устройств, доводящих потоки информации до потребителя и активно забирающих информацию у него.

Этому уже сейчас способствуют:

1. Зарождающиеся технологии медиа-серверов, способных собирать и хранить огромнейшие объемы информации и выдавать ее в реальном времени по множеству одновременно приходящих запросов;

2. Системы сверхскоростных широкополосных информационных магистралей, связывающие воедино все потребительские системы.

Названные ожидаемые технологии и характеристики устройств ЭВМ совместно с их общей миниатюризацией могут сделать всевозможные вычислительные средства и системы вездесущими, привычными, обыденными, естественно насыщающими нашу повседневную жизнь.

Специалисты предсказывают в ближайшие годы возможность создания компьютерной модели реального мира, такой виртуальной (кажущейся, воображаемой) системы, в которой мы можем активно жить и манипулировать виртуальными предметами. Простейший прообраз такого кажущегося мира уже сейчас существует в сложных компьютерных играх. Но в будущем можно говорить не об играх, а о виртуальной реальности в нашей повседневной жизни, когда нас в комнате, например, будут окружать сотни активных компьютерных устройств, автоматически включающихся и выключающихся по мере надобности, активно отслеживающих наше местоположение, постоянно снабжающих нас ситуационно необходимой информацией, активно воспринимающих нашу информацию и управляющих многими бытовыми приборами и устройствами.

СОДЕРЖАНИЕ
ВВЕДЕНИЕ


1.4. Новейшие достижения
2. ПРАКТИЧЕСКОЕ ЗАДАНИЕ
2.1. Исходные данные
2.2. Выполнение задания
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
ПРИЛОЖЕНИЕ

ВВЕДЕНИЕ
Компьютеры появились очень давно в нашем мире, но только в последнее время их начали так усиленно использовать во многих отраслях человеческой жизни. Еще десять лет назад было редкостью увидеть какой-нибудь персональный компьютер - они были, но были очень дорогие, и даже не каждая фирма могла иметь у себя в офисе компьютер. А теперь в каждом третьем доме есть компьютер, который уже глубоко вошел в жизнь самих обитателей дома.
Сама идея создания искусственного интеллекта появилась очень давно, но только в 20 столетии ее начали приводить в исполнение. Сначала появились огромные компьютеры, которые были зачастую размером с огромный дом. Использование таких махин было не очень удобно, но мир не стоял на одном месте эволюционного развития - менялись люди, менялась их среда обитания, и вместе с ней менялись и сами технологии, все больше совершенствуясь. И компьютеры становились все меньше и меньше по своим размерам, пока не достигли сегодняшних размеров.
Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние, которого на развитие научно-технического прогресса трудно переоценить. Области применения ЭВМ непрерывно расширяются. Этому в значительной степени способствует распространение персональных ЭВМ, и особенно микроЭВМ.
За время, прошедшее с 50-х годов, цифровая ЭВМ превратилась из «волшебного», но при этом дорогого, уникального и перегретого нагромождения электронных ламп, проводов и магнитных сердечников в небольшую по размерам машину – персональный компьютер – состоящий из миллионов крошечных полупроводниковых приборов, которые упакованы в небольшие пластмассовые коробочки.
В результате этого превращения компьютеры стали применяться повсюду. Они управляют работой кассовых аппаратов, следят за работой автомобильных систем зажигания, ведут учет семейного бюджета, или просто используются в качестве развлекательного комплекса, но это только малая часть возможностей современных компьютеров. Более того, бурный прогресс полупроводниковой микроэлектроники, представляющей собой базу вычислительной техники, свидетельствует о том, что сегодняшний уровень как самих компьютеров, так и областей их применения является лишь слабым подобием того, что наступит в будущем.
Изучение компьютерной техники уже введено в программы школьного обучения как обязательный предмет, чтобы ребенок смог уже с довольно раннего возраста знать строение и возможности компьютеров. А в самих школах (в основном на западе и в Америке) уже многие годы компьютеры применялись для ведения учебной документации, а теперь они используются при изучении многих учебных дисциплин, не имеющих прямого отношения к вычислительной технике.
Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, их влияние на развитие научно-технического прогресса трудно переоценить. Области применения ЭВМ непрерывно расширяются, чему в значительной степени способствует распространение персональных компьютеров, и особенно микроПК.
Цель данной работы – рассмотреть перспективы развития персональных компьютеров.
1. ОСНОВНЫЕ ТЕНДЕНЦИИ РАЗВИТИЯ КОМПЬЮТЕРНОЙ ТЕХНИКИ
1.1. Развитие оптических компьютеров
Развитие вычислительной техники представляет собой постоянно сменяющие друг друга физические способы реализации логических алгоритмов - от механических устройств (вычислительная машина Бэббиджа) к ламповым (компьютеры 40-50-х годов Марк I и Марк II), затем к транзисторным и, наконец, к интегральным схемам. И уже на рубеже XXI века шли разговоры о скором достижении пределов применения полупроводниковых технологий и появлении вычислительных устройств, работающих на совершенно ином принципе. Все это свидетельствует о том, что прогресс не стоит на месте, и с течением времени ученые открывают новые возможности создания вычислительных систем, принципиально отличающихся от широко применяемых компьютеров. Существует несколько возможных альтернатив замены современных компьютеров, одна из которых - создание так называемых оптических компьютеров, носителем информации в которых будет световой поток.
Проникновение оптических методов в вычислительную технику ведется по трем основным направлениям. Первое основано на использовании аналоговых интерференционных оптических вычислений для решения отдельных специальных задач, связанных с необходимостью быстрого выполнения интегральных преобразований. Второе направление связано с использованием оптических соединений для передачи сигналов на различных ступенях иерархии элементов вычислительной техники, т.е. создание чисто оптических или гибридных (оптоэлектронных) соединений вместо обычных, менее надежных, электрических соединений. При этом в конструкции компьютера появляются новые элементы - оптоэлектронные преобразователи электрических сигналов в оптические и обратно. Но самым перспективным направлением развития оптических вычислительных устройств является создание компьютера, полностью состоящего из оптических устройств обработки информации. Это направление интенсивно развивают с начала 80-х годов ведущие научные центры (MTI, Sandia Laboratories и др.) и основные компании-производители компьютерного оборудования (Intel, IBM, AMD).
В основе работы различных компонентов оптического компьютера (трансфазаторы-оптические транзисторы, триггеры, ячейки памяти, носители информации) лежит явление оптической бистабильности. Оптическая бистабильность - это одно из проявлений взаимодействия света с веществом в нелинейных системах с обратной связью, при котором определенной интенсивности и поляризации падающего на вещество излучения соответствуют два (аналог 0 и 1 в полупроводниковых системах) возможных стационарных состояния световой волны, прошедшей через вещество, отличающихся амплитудой и (или) параметрами поляризации. Причем предыдущее состояние вещества однозначно определяет, какое из двух состояний световой волны реализуется на выходе. Для большего понимания явление оптической бистабильности можно сравнить с обычной петлей магнитного гистерезиса (эффект, используемый в магнитных носителях информации). Увеличение интенсивности падающего на вещество светового луча до некоторого значения I1 приводит к резкому возрастанию интенсивности прошедшего луча; на обратном же ходе при уменьшении интенсивности падающего луча до некоторого значения I2 Весь набор полностью оптических логических устройств для синтеза более сложных блоков оптических компьютеров реализуется на основе пассивных нелинейных резонаторов-интерферометров. В зависимости от начальных условий (начального положения пика пропускания и начальной интенсивности оптического излучения) в пассивном нелинейном резонаторе, нелинейный процесс завершается установлением одного из двух устойчивых состояний пропускания падающего излучения. А из нескольких нелинейных резонаторов можно собрать любой, более сложный логический элемент (триггер).
Элементы памяти оптического компьютера представляют собой полупроводниковые нелинейные оптические интерферометры, в основном, созданными из арсенида галлия (GaAs). Минимальный размер оптического элемента памяти определяется минимально необходимым числом атомов, для которого устойчиво наблюдается оптическая бистабильность. Это число составляет ~1000 атомов, что соответствует 1-10 нанометрам.
К настоящему времени уже созданы и оптимизированы отдельные составляющие оптических компьютеров – оптические процессоры, ячейки памяти), однако до полной сборки еще далеко. Основной проблемой, стоящей перед учеными, является синхронизация работы отдельных элементов оптического компьютера в единой системе, поскольку уже существующие элементы характеризуются различными параметрами рабочей волны светового излучения (интенсивность, длина волны), и уменьшение его размера. Если для конструирования оптического компьютера использовать уже разработанные компоненты, то обычный PC имел бы размеры легкового автомобиля. Однако применение оптического излучения в качестве носителя информации имеет ряд потенциальных преимуществ по сравнению с электрическими сигналами, а именно:
 световые потоки, в отличие от электрических, могут пересекаться друг с другом;
 световые потоки могут быть локализованы в поперечном направлении до нанометровых размеров и передаваться по свободному пространству;
 скорость распространения светового сигнала выше скорости электрического;
 взаимодействие световых потоков с нелинейными средами распределено по всей среде, что дает новые степени свободы (по сравнению с электронными системами) в организации связи и создании параллельных архитектур.
Вообще, создание большего количества параллельных архитектур, по сравнению с полупроводниковыми компьютерами, является основным достоинством оптических компьютеров, оно позволяет преодолеть ограничения по быстродействию и параллельной обработке информации, свойственные современным ЭВМ. Развитие оптических технологий все равно будет продолжаться, поскольку полученные результаты важны не только для создания оптических компьютеров, но также и для оптических коммуникаций и сети Internet.
1.2. Развитие квантовых компьютеров
Рассмотрим, что такое квантовый компьютер. Основной его строительной единицей является кубит (qubit, Quantum Bit). Классический бит имеет лишь два состояния - 0 и 1, тогда как состояний кубита значительно больше. Для описания состояния квантовой системы было введено понятие волновой функции, ее значение представляется в виде вектора с большим числом значений. Существуют волновые функции, которые называются собственными для какой-либо определенной величины. Квантовая система может находиться в состоянии с волновой функцией, равной линейной комбинации собственных функций, соответствующих каждому из возможных значений (такое состояние называется сложным), т. е. физически - ни в возбужденном, ни в основном состоянии. Это означает, что кубит в одну единицу времени равен и 0, и 1, тогда как классический бит в ту же единицу времени равен либо 0, либо 1. Как для классических, так и для квантовых компьютеров были введены элементарные логические операции: дизъюнкция, конъюнкция и квантовое отрицание, при помощи которых будет организована вся логика квантового компьютера.
Опишем, как работает квантовый компьютер. Согласно законам квантовой механики, энергия электрона, связанного в атоме, не произвольна. Она может иметь лишь определенный прерывный (дискретный) ряд значений Е0, Е1,... Еn называемых уровнями энергии. Этот набор называют энергетическим спектром атома. Самый нижний уровень энергии Е0, при котором энергия атома наименьшая, называется основным. Остальные уровни (Е1, Е2,... Еn) соответствуют более высокой энергии атома и называются возбужденными. Излучение и поглощение атомом электромагнитной энергии происходит отдельными порциями - квантами, или фотонами. При поглощении фотона энергия увеличивается - он переходит «вверх» - с нижнего на верхний уровень, при излучении фотона атом совершает обратный переход вниз.
Если атом в данный момент времени находится в одном из возбужденных состояний Е2, то такое состояние атома неустойчиво, даже если на него не влияют другие частицы. Через очень короткое время атом перейдет в одно из состояний с меньшей энергией, например Е1. Такой самопроизвольный (спонтанный) переход с одного уровня на другой и сопровождающее его спонтанное излучение столь же случайны во времени, как радиоактивный распад ядра атома. Предсказать точно момент перехода принципиально невозможно - можно лишь говорить о вероятности того, что переход произойдет через такое-то время. Но атом может перейти с уровня Е2 на Е1 не спонтанно, а под действием электромагнитной волны, если только частота этой волны достаточно близка к частоте перехода атома. Такая резонансная волна как бы «расшатывает» электрон и ускоряет его «падение» на уровень с меньшей энергией. Переходы, происходящие под действием внешнего электромагнитного поля, называются вынужденными (или стимулированными).
При создании квантового компьютера основное внимание уделяется вопросам управления кубитами при помощи вынужденного излучения и недопущении спонтанного излучения, которое нарушит работу всей квантовой системы. От рассказа о физике происходящих в квантовом компьютере процессов перейдем к тому, как эти свойства реализуются в экспериментальном образце квантового компьютера.
Для того чтобы практически реализовать квантовый компьютер, существуют несколько важных правил, которые в 1996 г. привел Дивиченцо (D.P. Divincenzo). Без их выполнения не может быть построена ни одна квантовая система:
 Точно известное число частиц системы.
 Возможность приведения системы в точно известное начальное состояние.
 Высокая степень изоляции от внешней среды.
 Умение менять состояние системы согласно заданной последовательности элементарных преобразований.
Выполнение этих требований вполне реально с помощью существующих квантовых технологий, однако для того, чтобы воплотить теорию в реальность, нужны гигантские суммы денежных средств, которые пока не могут быть выделены на финансирование исследований.

1.3. Создание нейрокомпьютеров
Для решения некоторых задач требуется создание эффективной системы искусственного интеллекта, которая могла бы обрабатывать информацию, не затрачивая много вычислительных ресурсов. И разработчиков «осенило»: мозг и нервная система живых организмов позволяют решать задачи управления и эффективно обрабатывать сенсорную информацию, а это огромный плюс для создаваемых вычислительных систем. Именно это послужило предпосылкой создания искусственных вычислительных систем на базе нейронных систем живого мира. Специалисты, добившись нужных результатов в этой области, создадут компьютер с большими возможностями.
Создание компьютера на основе нейронных систем живого мира базируется на теории перцептронов, разработчиком которой был Розенблатт. Он предложил понятие перцептрона - искусственной нейронной сети, которая может обучаться распознаванию образов. Предположим, что есть некоторая зенитно-ракетная установка, задача которой - распознать цель и определить наиболее опасную из них. Также есть два самолета вероятного противника: штурмовик и бомбардировщик. Зенитно-ракетная установка, используя оптические средства, фотографирует самолеты и отправляет полученные снимки на вход нейронной сети (при полностью сфотографированном самолете нейронная сеть быстро распознает его). Но если снимок получился плохо, то именно здесь используются основные свойства нейронной сети, одно из которых - возможность к самообучению. Например, на снимке отсутствует одно крыло и хвостовая часть самолета. Через некоторое (приемлемое) время нейронная сеть сама дорисовывает отсутствующие части и определяет тип этого самолета и дальнейшие действия по отношению к нему. Из распознанных штурмовика и бомбардировщика оператор данной зенитно-ракетной установки выберет для уничтожения более опасный самолет.
Перспективность создания компьютеров по теории Розенблатта состоит в том, что структуры, имеющие свойства мозга и нервной системы, имеют ряд особенностей, которые сильно помогают при решении сложных задач:
1) Параллельность обработки информации.
2) Способность к обучению.
3) Способность к автоматической классификации.
4) Высокая надежность.
5) Ассоциативность.
Нейрокомпьютеры - это совершенно новый тип вычислительной техники, иногда их называют биокомпьютерами. Нейрокомпьютеры можно строить на базе нейрочипов, которые функционально ориентированы на конкретный алгоритм, на решение конкретной задачи. Для решения задач разного типа требуется нейронная сеть разной топологии (топология - специальное расположение вершин, в данном случае нейрочипов, и пути их соединения). Возможна эмуляция нейрокомпьютеров (моделирование) - как программно на ПЭВМ и суперЭВМ, так и программно-аппаратно на цифровых супербольших интегральных схемах.
Искусственная нейронная сеть построена на нейроноподобных элементах - искусственных нейронах и нейроноподобных связях. Здесь важно заметить, что один искусственный нейрон может использоваться в работе нескольких (приблизительно похожих) алгоритмов обработки информации в сети, и каждый алгоритм осуществляется при помощи некоторого количества искусственных нейронов.

1.4. Новейшие достижения
Рассмотрим новейшие достижения в области компьютерных технологий.
1. Суперпамять.
Недавно американская фирма Nantero из Бостона, разработала технологию, позволяющую серийно производить чипы памяти на нанотрубках до 10Гб данных. Память нового поколения, использующая массив фуллереновых трубок на поверхности чипа кремния (NRAM, Nanoscale Random Access Memory) будет хранить данные даже после отключения питания устройства. Это наводит на мысли, как резко может измениться структура компьютера. Ведь по сути, это качественный скачок в производстве компьютеров. Загрузка компьютеров, оснащенных такой памятью, при включении будет происходить мгновенно. Да и быстродействие компьютеров значительно возрастет, так как не будет обращения к винчестеру. Винчестеры как таковые будут не нужны. Можно будет отказаться от системного блока.
Компьютер недалекого будущего состоит из следующих частей. Жидкокристаллический дисплей 19 дюймов на котором сзади располагается системная плата с процессором и памятью. Сейчас Intel выпустила наборы системной логики 865 и 875, с двухканальным контроллером памяти. Наверное, будет 4-х и 8-ми канальная организация памяти. Емкость памяти компьютера 100-200 Гб. От южного моста можно оставить 6 канальный звук. От CD и DVD приводов можно будет отказаться так, как данные удобней будет переносить на компактной флэш-памяти.
2. Робот-натуралист.
Американский дизайнер Сабрина Рааф представила робота, озабоченного проблемами экологии. «Translator II: Grower» представляет собой стальную платформу, которая держится стены и перемещается по периметру ком¬наты. Робот использует самый тривиаль¬ный сенсор углекислого газа для анализа состояния окружающей среды. Каждые несколько секунд машина делает замеры, после чего наносит на стену риску. Через полсантиметра - другую. Чем выше кон¬центрация углекислого газа, тем длиннее полоска. Такая своеобразная диаграмма информирует о состоянии окружающей среды. Особенно интересно наблюдать за поведением робота при большом скоп¬лении людей в помещении.
3. Наш новый суперкомпьютер.
Не так давно в Москве Объединенный институт проблем информатики Наци¬ональной академии наук Беларуси, Инсти¬тут программных систем Российской Ака¬демии Наук, компания «Т-Платформы» и корпорация AMD презентовали супер¬компьютер «СКИФ К-1000». Он предназна¬чен для решения широкого спектра задач в различных областях науки. Этого монстра собрали наши соотечественники совмест¬но с белорусскими коллегами из 576 процессоров AMD Opteron. Компьютер получился самым мощным на всей территории СНГ и Восточ¬ной Европы и занимает почетное 98 место в рейтинге самых скоростных машин ТОР500. Главное, что разра¬ботчики не остановились на достигнутом, и продолжают разработки. Возможно, скоро именно в России будут трудиться самые быстрые компьютеры.
4. Протез мозга.
Ученые из Южнокалифорнийского университета в Америке разрабо-тали микрочип, имитирующий работу участка головного мозга, отвечающего за запоминание информации. Тестиро¬вание проводилось на мозговых тканях обычной крысы. Оно прошло успешно - проанализиро-вав импульсы, полученные с чипа, уче¬ные пришли к выводу, что они абсолют¬но идентичны тем, которые дает срез ткани головного мозга. В ближай¬шее время команда ученых планирует провести опыты уже не на кусках ткани, а на живых животных. Если опыты пройдут удачно и не будет замечено никаких ано¬малий, то, разумеется, разработки будут продолжаться дальше. Хотя, как заявляет Теодор Бергер, до создания полноценно¬го протеза еще далеко. Например, пока не ясно, каким образом микрочип будет взаимодействовать с те¬ми участками мозга, с которыми его не получится соединить напрямую.
5. Робот-носильщик.
Компания Fujitsu представила универ¬сального робота-носильщика. Еще в фойе робот приветствует гостей отеля хриплым баритоном. Уточнив номер ком¬наты, Service Robot берет тяжелые чемо¬даны в обе «руки» и начинает движение в сторону лифта. А если вещей много, вы¬катывает специальную тележку. Элект¬ронная карта отеля, восемь камер и ульт-развуковые сенсоры позволяют роботу преодолевать любые препятствия. Пра¬вое и левое колеса вращаются независи¬мо, поэтому движение по наклонным и неровным поверхностям дается легко. Используя систему обработки трехмер¬ных изображений, робот может хватать предметы и протягивать их гостям. За реалистичное движение «рук» отвечает модель нервной системы позвоночных. В продолжение своей миссии Service Robot нажимает кнопку вызова лифта, подни¬мается на этаж и провожает гостей в но¬мер. Робот чутко воспринимает голосо¬вые инструкции. Три микрофона позволя¬ют ему определить источник команд, что¬бы обернуться на голос. Справки об оте¬ле можно получить на цветном сенсор¬ном экране. Робот подключен к интерне¬ту по интерфейсу Wi-Fi 802.11b. Дроид самостоятельно контролирует заряд батареи и время от времени отправляется на базу для индукционной подзарядки без прямого контакта с зарядным устрой¬ством. Ночью робот патрулирует коридоры отеля. Размеры Service Robot -65x57x130 см. Вес робота - 63 кг. Ско¬рость движения - до 3 км/ч. Service Robot поступил в продажу в июне 2005 года по цене 18 тысяч долларов.

2. ПРАКТИЧЕСКОЕ ЗАДАНИЕ
2.1. Исходные данные
Организация ООО «Тобус» начисляет амортизацию на свои основные средства (ОС) линейным методом согласно установлен¬ному сроку службы (рис. 14.1). При этом необходимо отслеживать ОС в разрезе подразделений (рис. 14.2).
Сумма амортизации = Первоначальная стоимость/Срок службы
Начисление амортизации следует производить, только если ОС находится в эксплуатации.
Организовать ведение журнала регистрации ОС по подраз¬делениям и ежемесячные начисления амортизации согласно со¬стоянию ОС (рис. 14.3).
1. Создать таблицы по приведенным ниже данным (рис. 14.1 - 14.3).
2. Организовать межтабличные связи для автоматического заполнения графы журнала учета ОС (рис. 14.3): «Наименование ОС», «Наименование подразделения», «Срок службы, мес.».
3. Определить общую сумму амортизации по каждому ОС.
4. Определить общую сумму амортизации по конкретному подразделению.
5. Определить общую сумму амортизации по каждому ме¬сяцу.
6. Определить остаточную стоимость ОС.
7. Построить гистограмму по данным сводной таблицы.

Рис. 14.2. Список подразделений организации.

Рис. 14.3. Расчет суммы амортизации ОС.

2.2. Выполнение задания
Для выполнения этого задания удобнее всего воспользоваться программой Excel.
С помощью программы Excel можно создавать самые различные документы. Рабочие листы (Sheets) можно использовать для составления таблиц, вычисления статистических оценок, управления базой данных и составления диаграмм. Для каждого из этих приложений программа Excel может создать отдельный документ, который сохраняется на диске в виде файла.
Файл может содержать несколько взаимосвязанных рабочих листов, образующих единый трехмерный документ (блокнот, рабочую папку). С помощью трехмерных документов пользователь получает прямой доступ одновременно к нескольким таблицам и диаграммам, что повышает эффективность их обработки.
Все данные таблицы записываются в так называемые ячейки, которые находятся на пересечении строк и столбцов таблицы. По умолчанию содержимое ячейки представляется программой Excel в стандартном формате, который устанавливается при запуске программы. Например, для чисел и текстов задается определенный вид и размер шрифта.
В программе Excel имеются контекстные меню, которые вызываются правой кнопкой мыши, когда промаркирована некоторая область таблицы. Эти меню содержат много директив обработки и форматирования таблиц. Директивы форматирования можно также вызвать на панели форматирования (вторая строка пиктографического меню), щелкнув мышью по соответствующей пиктограмме.
Отдельные ячейки таблицы маркируются (выделяются) автоматически с помощью указателя ячеек. Чтобы перевести указатель в заданную ячейку, нужно щелкнуть по ней левой кнопкой мыши или использовать клавиши управления курсором. Для маркировки нескольких ячеек нужно щелкнуть в начале маркируемой области (левый верхний угол) и, удерживая кнопку мыши нажатой, перемещать манипулятор в конец области (правый нижний угол). Чтобы отменить маркировку области, можно просто щелкнуть по немаркированной ячейке. Для маркирования нескольких ячеек с помощью клавиатуры необходимо установить указатель ячеек в начальную ячейку области, а затем, удерживая клавишу нажатой, распространить маркировку на всю область с помощью клавиш управления курсором.
Одна строка или столбец таблицы маркируются щелчком по номеру (адресу), который расположен в заголовке строки или столбца. Для маркирования нескольких строк или столбцов нужно щелкнуть по номеру первой строки (столбца), а затем, удерживая кнопку мыши нажатой, переместить манипулятор в нужную позицию.
Возможность использования формул и функций является одним из важнейших свойств программы обработки электронных таблиц. Это, в частности, позволяет проводить статистический анализ числовых значений в таблице.
Текст формулы, которая вводится в ячейку таблицы, должен начинаться со знака равенства (=), чтобы программа Excel могла отличить формулу от текста. После знака равенства в ячейку записывается математическое выражение, содержащее аргументы, арифметические операции и функции.
В качества аргументов в формуле обычно используются числа и адреса ячеек. Для обозначения арифметических операций могут использоваться следующие символы: + (сложение); - (вычитание); * (умножение); / (деление).
Формула может содержать ссылки на ячейки, которые расположены на другом рабочем листе или даже в таблице другого файла. Однажды введенная формула может быть в любое время модифицирована. Встроенный Менеджер формул помогает пользователю найти ошибку или неправильную ссылку в большой таблице.
Кроме этого, программа Excel позволяет работать со сложными формулами, содержащими несколько операций. Для наглядности можно включить текстовый режим, тогда программа Excel будет выводить в ячейку не результат вычисления формулы, а собственно формулу.
Выполненное задание расположено в приложении.
ЗАКЛЮЧЕНИЕ
Создание качественно новых вычислительных систем с более высокой производительностью и некоторыми характеристиками искусственного интеллекта, например с возможностью самообучения,- очень актуальная тема. Последние десять лет такие разработки ведутся во многих направлениях - наиболее успешными и быстро развивающимися из них являются квантовые компьютеры, нейрокомпьютеры и оптические компьютеры, поскольку современная элементная и технологическая база имеет все необходимое для их создания.
В данной работе рассматривались три вида компьютеров: квантовые компьютеры, которые построены на основе явлений, возникающих в квантовой физике и дающих мощный вычислительный агрегат при решении задач сложных вычислений; нейрокомпьютеры и оптические компьютеры, которые построены на различной теоретической базе, но схожи в том, что и те и другие занимаются обработкой информации.
С достоверностью известно, что уже сейчас существуют системы обработки информации, построенные на объединении оптических и нейронных компьютеров, - это так называемые нейроно-оптические компьютеры. Для того чтобы создать мощную систему обработки информации, пришлось разработать гибридную систему, т. е. имеющую свойства как оптических, так и нейронных компьютеров. С целью проиллюстрировать практическое воплощение компьютерного прогресса в данной работе были приведены примеры новейших изобретений в сфере высоких технологий.

СПИСОК ЛИТЕРАТУРЫ
1. Андрейчиков А.В., Андрейчикова О.Н. Интеллектуальные информационные системы / Учебник. – СПб: Питер, 2004.
2. Барановская Т.П. и др. Архитектура компьютерных систем и сетей / Учеб. пособие. – М.: Наука, 2003.
3. Барановская Т.П. и др. Информационные системы и технологии в экономике / Учебник. - 2-е изд., доп. и перераб. – М.: Дело, 2005.
4. Экономическая информатика / Учебник / Под ред. В.П. Косарева - 2-е изд. перераб. и доп. – М.: Инфра-М, 2005.
5. Макарова Н.В. Информатика / Учебник. - 3-е издание, перераб. – М.: Финансы и статистика, 2006.
6. Фигурнов В.Э. IBM PC для пользователя. - М.: Инфра–М, 2003.

ПРИЛОЖЕНИЕ

Похожие материалы

Компьютерные информационные технологии 2

(КИТ 2)

КОНСПЕКТ ДЛЯ ЗАОЧНОЙ ФОРМЫ ОБУЧЕНИЯ

1. В.С. Оскерко, З.В. Пунчик. О.А. Сосновский Технологии баз данных. Учебное пособие, Минск БГЭУ 2007.

2. Оскерко В.С., Пунчик З.В. Практикум по технологиям баз данных: Учеб. пособие. Мн.: БГЭУ, 2004.

3. Оскерко, В.С. Компьютерные информационные технологии: учеб пособие: в 3 ч. Ч 2. Базы данных и знаний / В.С. Оскерко, З.В.Пунчик. – Минск: БГЭУ, 2011. – 227 с

В истории развития вычислительной техники можно выделить два основных два направления:

Первое направление - применение вычислительной техники для выполнения численных расчетов, которые слишком долго или вообще невозможно производить вручную. (Пример: конструирование сложных аппаратов, численное моделирование, задачи оптимизации, компьютерные игры и т.д). Становлению этого направления способствовало интенсификации методов численного решения сложных математических задач, развитию языков программирования (FORTRAN, PASCAL, C++ и т.д.)

Второе направление - это использование средств вычислительной техники в автоматических или автоматизированных информационных системах, т.е. программных комплексов для надежного хранения информации в памяти компьютера, поиск и преобразования хранимой информации. Обычно объемы хранимой информации велики (до ГБ, ТБ), а сама информация имеет достаточно сложную структуру. Классическими примерами информационных систем являются банковские системы, системы резервирования авиационных или железнодорожных билетов, мест в гостиницах и т.д.

Это направление возникло несколько позже первого. Это связано с тем, что на заре вычислительной техники компьютеры обладали ограниченными возможностями в части памяти. В начале использовались два вида устройств внешней памяти: магнитные ленты и барабаны. При большой емкости магнитные ленты по своей физической природе обеспечивали последовательный доступ к данным. Магнитные барабаны давали возможность произвольного доступа к памяти, но были ограниченного размера. С появлением магнитных дисков началась история управления данными во внешней памяти. В настоящее время магнитные диски (винчестеры) позволяют хранить сотни и тысячи Гб информации.

Предметом курса КИТ 2 является второе направление- изучение технологий организации, хранения и обработки данных в современных информационных системах.

Курс тесно связан с курсом «Компьютерные информационные технологии 1,3», а также со специальными экономическими дисциплинами.

2. Понятие экономической информации

Термин «информация » происходит от латинского informatio – что означает изложение, разъяснение. В научных и официальных источниках этот термин трактуется по- разному. Будем придерживаться такого определения:



Информация – совокупность фактов, явлений, событий, представляющий интерес, подлежащих регистрации и обработке.

Это понятие теоретически подразумевает взаимодействие двух партнеров: источника и приемника информации. В роли каждого из них может выступать объект науки и техники, общества и природы, животные и люди.

В теории информации под этим термином понимается такое сообщение, которое содержит факты, неизвестные ранее потребителю и дополняющие его представление об изучаемом или анализируемом объекте. Для определения количественной меры информации в 1946 г. американский ученый-статистик Джон Тьюки предложил название БИТ (BIT - аббревиатура от BInary digiT), одно из главных понятий XX века. Тьюки избрал бит для обозначения одного двоичного разряда, способного принимать значение 0 или 1.

В 1948 году американский математик Клод Шеннон использовал бит как единицу измерения информации. Мерой количества информации Шеннон предложил считать функцию, названную им энтропией.

H = -∑ P i log 2 P i , (1)

где P i - вероятность наступления некоторого события.

Из (1) очевидно, что чем менее вероятно событие, тем больше информации оно в себе несет (энтропия Н такого события по Шеннону выше). События, вероятность наступления которых равна или близка к 1 несут в себе мало информации.

Пример

Если нам несколько раз подряд сообщать одни и те же новости, то уже на второй раз мы не получим никакой новой информации, т.к. мы ее уже слышали. Вероятность в этом случае P i =1, и энтропия по Шеннону Н=0, а значит не нужно ни одного бита для представления вновь поступившей информации. С другой стороны, если вероятность наступления новость близка к 0 (такие новости в средствах массовой информации называются сенсацией), то энтропия будет большой и для представления поступившей информации требуется большое количество бит.

Другими словами: информация – это сведения, которые должны снять у потребителя существующую до их получения неопределенность, расширить его понимание объекта полезными для потребителя сведениями.

Информация- это неубывающий ресурс жизнеобеспечения, ее объем в течение времени возрастает. В 70- е годы прошлого столетия объем информации удваивался каждые 5- 7 лет. В 80 –е годы удвоение происходило уже за 20 месяцев, в настоящее время - ежегодно.

Информация охватывает все стороны жизни общества – от материального производства до социальной сферы. По сфере применения в деятельности человека она подразделяется на научно-техническую, производственную, управленческую, социальную и т.п.

Информация, которая обслуживает процессы производства, распределения, обмена и потребления материальных благ и обеспечивает решение задач управления народным хозяйством и его звеньями, называется управленческой . Важным компонентом управленческой информации является экономическая.

Экономическая информация – это совокупность различных сведений экономического характера, используемых для планирования, учета, контроля, анализа и управления народным хозяйством и его звеньями .

Экономическая информация включает сведения о трудовых, материальных и денежных ресурсах и деятельности экономических объектов (предприятий, организаций, банков, фирм и т.д.) на определенный момент времени. Эти сведения представляются натуральными и стоимостными показателями.

Экономическую информацию, циркулирующую в любом экономическом объекте, можно классифицировать по разным признакам:

· по функциям управления – учетная, плановая, статистическая, оперативного управления и др.;

· по месту возникновения – внутренняя и внешняя;

· по стадиям образования – первичная и вторичная;

· по способу представления – цифровая, алфавитно-цифровая, графическая;

· по стабильности – переменная, условно-постоянная, постоянная;

· по полноте – недостаточная, достаточная, избыточная;

· по истинности – достоверная, недостоверная;

· по временному периоду возникновения – периодическая и непериодическая.

Наиболее важными характеристиками экономической информации являются:

Корректность

Полезность

Оперативность

Точность

Достоверность

Устойчивость

Достаточность

Корректность – обеспечивает ее однозначное восприятие всеми потребителями

Ценность (полезность) - проявляется в том случае, если она способствует достижению стоящей перед потребителем цели (Относительность ценности – новая информация может быть более ценной)

Оперативность – отражает актуальность информации для необходимых расчетов и принятия решений в изменившихся условиях

Точность – определяет допустимый уровень искажения информации

Достоверность – определяется свойством информации отражать реально существующие объекты и процессы с необходимой точностью

Устойчивость- отражает способность реагировать на изменения без нарушения необходимой точности. Устойчивость определяется выбранной методикой ее отбора и формирования

Достаточность (полнота) – она содержит минимально необходимый объем сведений для принятия правильного решения. Неполная информация снижает эффективность принятия решений. Избыточность обычно снижает оперативность и затрудняет принятие решения, но зато делает информацию более устойчивой.

Структурными единицами экономической информации являются реквизиты, показатели, документы, массивы.

Реквизиты выражают определенные свойства объекта и подразделяются на реквизиты-признаки и реквизиты-основания.

Реквизит-признак характеризует качественные свойства объекта (например, Ф.И.О. исполнителя, наименования работ, дата заключения договора, и т. д.).

Реквизит-основание дает количественную характеристику объекта, выраженную в определенных единицах измерения (например, количество изделий в штуках, цена продукта в рублях и т. д.)

Реквизиты имеют наименования и значения. Область значений описывается форматом. Формат определяет тип и максимальную длину значений. Тип может быть числовым, символьным, логическим и дата/время. Для записи формата используются определенные символы.

Совокупность реквизита-основания и логически связанных с ним реквизитов-признаков, имеющих экономический смысл, образует показатель .

Пример:

Реквизиты-признаки: «Предприятие», «Ф.И.О. менеджера»

Реквизит-основание: «Количество выполненных заказов»

Показатель: «Количество заказов, выполненных менеджером Петровым А.И., составило 100 заказов».

На основе показателей строятся документы.

Документ – это материальный объект, содержащий информацию, оформленную в установленном порядке, и имеющий в соответствии с действующим законодательством правовое значение. Экономические объекты широко применяют различные документы (платежные поручения, акты, сводки, ведомости и т. д.) для отражения своей деятельности.

Совокупность документов, объединенных по определенному признаку, образует массив . Пример массива – множество финансовых отчетов предприятий некоторой отрасли.

3. Экономические информационные системы

Система (ИС) в широком смысле слова – это совокупность объектов и отношений между ними, образующая единое целое. Системе свойственны:

· делимость – система состоит из ряда элементов, отвечающих конкретным целям и задачам;

· многообразие элементов и различия их природы, что связано с их функциональной специфичностью и автономностью;

· целостность – функционирование множества элементов подчинено единой цели;

· структурированность, обусловленная наличием связей между элементами, которые распределены по уровням иерархии.

На любой стадии развития общество требует для своего управления предварительно подготовленной, систематизированной информации.

Управление – это процесс целенаправленного воздействия на объект или систему, организующий функционирование объекта или системы по заданной программе . Систему, реализующую функции управления, называют системой управления . Кибернетика (наука об управлении) представляет эту систему как совокупность объекта управления и субъекта управления – управленческого аппарата. Управление связано с обменом информацией между компонентами системы, а также системы с окружающей средой.

Информационная система – это система информационного обслуживания работников управленческого аппарата, выполняющая технологические функции по сбору, накоплению, хранению и обработке информации. Основная цель информационной системы – это удовлетворение информационных потребностей пользователей путем предоставления им необходимой информации на основе хранимых данных.

ИС можно рассматривать как сложную систему, состоящую из нескольких взаимодействующих слоев (рис. 1). В основании пирамиды, представляющей ИС, лежит слой компьютеров – центров хранения и обработки информации, и транспортная подсистема, обеспечивающая надежную передачу информации между компьютерами.


Рис.1. Многослойное представление информационной системы

Над транспортной системой работает слой сетевых операционных систем, который организует работу приложений в компьютерах и предоставляет через транспортную систему ресурсы своего компьютера в общее пользование.

Над операционной системой работают различные приложения, но из-за особой роли систем управления базами данных (СУБД), хранящих в упорядоченном виде основную корпоративную информацию и производящих над ней базовые операции поиска, этот класс системных приложений обычно выделяют в отдельный слой ИС.

На следующем уровне работают системные сервисы, которые, пользуясь СУБД, как инструментом для поиска нужной информации среди миллионов и миллиардов байт, хранимых на дисках, предоставляют конечным пользователям эту информацию в удобной для принятия решения форме, а также выполняют некоторые общие для предприятий всех типов процедуры обработки информации. К этим сервисам относится служба WorldWideWeb, система электронной почты, системы коллективной работы и многие другие.

И, наконец, верхний уровень ИС представляют специальные программные системы, которые выполняют задачи, специфические для данного предприятия или предприятий данного типа. Примерами таких систем могут служить системы автоматизации банка, организации бухгалтерского учета, автоматизированного проектирования, управления технологическими процессами и т.п.

Конечная цель ИС воплощена в прикладных программах верхнего уровня, но для их успешной работы абсолютно необходимо, чтобы подсистемы других слоев четко выполняли свои функции.

Стратегические решения, как правило, влияют на облик ИС в целом, затрагивая несколько слоев сетевой "пирамиды", хотя первоначально касаются только одного конкретного слоя или даже отдельной подсистемы этого слоя. Такое взаимное влияние продуктов и решений нужно обязательно учитывать при планировании ИС, иначе можно столкнуться с необходимостью срочной и непредвиденной замены, например, сетевой технологии, из-за

Экономическая информационная система (ЭИС) – это система, функционирование которой во времени заключается в сборе, обработке и распространении информации о деятельности некоторого экономического объекта. Важнейшие функции ЭИС – учет, анализ, контроль, регулирование, прогнозирование и планирование экономических процессов.

Возрастание объемов информации в сфере управления, усложнение ее обработки невозможно без применения вычислительной техники.

Пример

В 30-х годах двадцатого столетия для решения проблем управления тогдашним хозяйством требовалось производить порядка 10 14 математических операций в год, а в средине 70-х, - уже примерно 10 16 . Если принять, что один человек без помощи техники способен произвести в среднем 10 6 операций в год (пропускная способность человека оценивается 2-4 бит/с), то получится, что необходимо около 10 миллиардов человек, для того, чтобы экономика оставалась хорошо управляемой.

Поэтому в настоящее время ЭИС представляет собой компьютеризированную информационную систему, использующую для обмена информацией компьютерные сети и самые современные компьютеры. В курсе «Компьютерные информационные технологии» в дальнейшем будет изучаться самый широкий спектр таких систем, как MRP, ERP, CSRP.

ЭИС могут быть классифицированы по ряду признаков:

· По сфере функционирования объекта управления

ЭИС промышленности

ЭИС сельского хозяйства

ЭИС транспорта

ЭИС связи и т.д.

· По видам процессов управления

o Банковские ЭИС

o АИС фондового рынка

o Финансовые ЭИС

o Страховые ЭИС

o Налоговые ЭИС

o ЭИС таможенной службы

o Статистические ЭИС

o ЭИС промышленных предприятий (бухгалтерия, оперативное управление и т.д.)

o ЭИС научных исследований

· По уровню в системе государственного управления

Отраслевые ЭИС

Территориальные ЭИС

Межотраслевые ЭИС

Важнейшим элементом ЭИС является информационное обеспечение. Информационное обеспечение представляет собой информацию, характеризующую состояние управляемого объекта, и является основой для принятия управленческих решений. Оно включает:

· системы показателей, описывающих деятельность экономического объекта;

· системы классификации и кодирования информации;

· документацию для отображения показателей;

· информационную базу.

Информационная база включает внутреннюю и внешнюю информацию, хранящуюся на различных носителях. Внутренняя информация возникает в самой системе и отражает финансово-хозяйственное состояние экономического объекта в различные временные интервалы. Внешняя информации характеризует состояние рынка и конкурентов, процентные ставки и цены, налоговую политику и политическую ситуацию и др. На основе информационной базы функционирует ЭИС.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Современные тенденции развития радиопередающей техники

Радиопередающие устройства (РПдУ) применяются в сферах телекоммуникации, телевизионного и радиовещания, радиолокации, радионавигации. Стремительное развитие микроэлектроники, аналоговой и цифровой микросхемотехники, микропроцессорной и компьютерной техники оказывает существенное влияние на развитие радиопередающей техники как с точки зрения резкого увеличения функциональных возможностей, так и с точки зрения улучшения ее эксплуатационных показателей. Это достигается за счет использования новых принципов построения структурных схем передатчиков и схемотехнической реализации отдельных их узлов, реализующих цифровые способы формирования, обработки и преобразования колебаний и сигналов, имеющих различные частоты и уровни мощности.

Радиопередатчики, в которых используются цифровые способы формирования, обработки и преобразования колебаний и сигналов, будем далее называть цифровыми радиопередающими устройствами (ЦРПдУ).

Рассмотрим современные требования к РПдУ, которые ставят проблемы, не решаемые в принципе методами аналоговой схемотехники, что вызывает необходимость применения цифровых технологий в РПдУ.

В области телекоммуникаций и вещания можно выделить следующие основные непрерывно возрастающие требования к системам передачи информации, элементами которых являются РПдУ:

Обеспечение помехоустойчивости в перегруженном радиоэфире;

Повышение пропускной способности каналов;

Экономичность использования частотного ресурса при многоканальной связи;

Улучшение качества сигналов и электромагнитной совместимости.

Стремление удовлетворить этим требованиям приводит к появлению новых стандартов связи и вещания. Среди уже известных GSM, DECT, SmarTrunk II, TETRA, DRM и др.

Основным направлением развития систем связи является обеспечение множественного доступа, при котором частотный ресурс совместно и одновременно используется несколькими абонентами. К технологиям множественного доступа относятся TDMA, FDMA, CDMA и их комбинации. При этом повышают требования и к качеству связи, т.е. помехоустойчивости, объему передаваемой информации, защищенности информации и идентификации пользователя и пр. Это приводит к необходимости использования сложных видов модуляции, кодирования информации, непрерывной и быстрой перестройки рабочей частоты, синхронизации циклов работы передатчика, приемника и базовой станции, а также обеспечению высокой стабильности частоты и высокой точности амплитудной и фазовой модуляции при рабочих частотах, измеряемых гигагерцами. Что касается систем вещания , здесь основным требованием является повышение качества сигнала на стороне абонента, что опять же приводит к повышению объема передаваемой информации в связи с переходом на цифровые стандарты вещания. Крайне важна также стабильность во времени параметров таких радиопередатчиков - частоты, модуляции. Очевидно, что аналоговая схемотехника с такими задачами справиться не в состоянии, и формирование сигналов передатчиков необходимо осуществлять цифровыми методами.

Современную радиопередающую технику невозможно представить без встроенных средств программного управления режимами работы каскадов, самодиагностики, автокалибровки, авторегулирования и защиты от аварийных ситуаций, в том числе автоматического резервирования. Такие функции в передатчиках осуществляют специализированные микроконтроллеры, иногда совмещающие функции цифрового формирования передаваемых сигналов. Часто используется дистанционное управление режимами работы при помощи удаленного компьютера через специальный цифровой интерфейс. Любой современный передатчик или трансивер обеспечивает определенный уровень сервиса для пользователя , включающий цифровое управление передатчиком (например, с клавиатуры) и индикацию режимов работы в графической и текстовой форме на экране дисплея. Очевидно, что здесь не обойтись без микропроцессорных систем управления передатчиком, определяющих его важнейшие параметры.

Производство передатчиков такого уровня сложности было бы экономически невыгодно в случае их аналогового исполнения. Именно средства цифровой микросхемотехники, позволяющие заменить целые блоки обычных передатчиков, дают возможность существенно улучшить массогабаритные показатели передатчиков (вспомните сотовые телефоны), достичь повторяемости параметров, высокой технологичности и простоты в их изготовлении и настройке.

Очевидно, что появление и развитие цифровых радиопередающих устройств явилось неизбежным и необходимым этапом истории радиотехники и телекоммуникаций, позволив решить многие насущные задачи, недоступные аналоговой схемотехнике.

В качестве примера рассмотрим вещательный цифровой радиопередатчик HARRIS PLATINUM Z (рис.1.1), обладающий следующими основными особенностями (информация на www.pirs.ru):

А) Полностью цифровой FM-возбудитель HARRIS DIGITTM с встроенным стереогенератором с цифровой обработкой сигнала. Будучи первым в мире полностью цифровым FМ-возбудителем, HARRIS DIGITTM принимает звуковые частоты в стандарте AES/EBU в цифровом виде и генерирует максимально модулированную несущую радиочастоту полностью в цифровом режиме, благодаря чему уровень помех и искажений ниже, чем в любом другом FM-передатчике (16-битовое цифровое качество ЗЧ).

Б) Система быстрого пуска обеспечивает достижение полной мощности по всем показателям в течение 5 секунд после включения.

В) Контроллер на микропроцессорах позволяет осуществлять полный контроль, диагностику и вывод на дисплей. Включает в себя встроенную логику и команды для переключения между основными/дополнительными HARRIS DIGITTM возбудителями и предварительным усилителем мощности (ПУМ).

Г) Широкополосная схема позволяет отказаться от настройки в диапазоне от 87 до 108 МГц (при варианте N+1). Изменение частоты можно произвести вручную переключателями менее чем за 5 минут, и менее чем за 0,5 сек с помощью дополнительного внешнего контроллера.

Рис.1.1

Еще одним примером цифрового радиопередатчика может послужить устройство для беспроводной передачи данных BLUETOOTH (информация www.webmarket.ru), который будет подробнее рассмотрен в п.3.1 (рис.1.2 и табл.1.1).

Рис.1.2.

Табл.1.1. Краткие спецификации Bluetooth

Итак, выделим основные области применения цифровых технологий формирования и обработки сигналов в радиопередающих устройствах.

1. Формирование и преобразование аналоговых и цифровых информационных НЧ сигналов, в т.ч. сопряжение компьютера с радиопередатчиком (групповые сигналы, кодирование, преобразование аналоговых сигналов в цифровые или наоборот).

2. Цифровые методы модуляции ВЧ сигналов.

3. Синтез частот и управление частотой.

4. Цифровой перенос спектра сигналов.

5. Цифровые методы усиления мощности ВЧ сигналов.

6. Цифровые системы автоматического регулирования и управления передатчиками, индикации и контроля.

Следующие разделы содержат более подробную информацию о каждой из названных областей применения цифровой техники в радиопередатчиках.

Список литературы

1. Цифровые радиоприемные системы / Под ред. М.И. Жодзишского. М.: Радио и связь, 1990. 208 с.

2. Повышение эффективности мощных радиопередающих устройств / Под ред. А.Д.Артыма. М.: Радио и связь, 1987. 175 с.

3. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. Цифровая обработка сигналов: Учеб. пособие для вузов. М.: Радио и связь, 1990. 256 с.

4. Семенов Б.Ю. Современный тюнер своими руками. М.: СОЛОН_Р. 2001. 352 с.

Подобные документы

    История развития и становления радиопередающих устройств, основные проблемы в их работе. Обобщенная структурная схема современного радиопередатчика. Классификация радиопередатчиков по разным признакам, диапазон частот как одна из характеристик приборов.

    реферат , добавлен 29.04.2011

    Общие сведения о Bluetooth’е, что это такое. Типы соединения, передача данных, структура пакета. Особенности работы Bluetooth, описание его протоколов, уровня безопасности. Конфигурация профиля, описание основных конкурентов. Спецификации Bluetooth.

    контрольная работа , добавлен 01.12.2010

    Характеристики радиопередающих устройств, их основные функции: генерация электромагнитных колебаний и их модуляции в соответствии с передаваемым сообщением. Проектирование функциональной схемы радиопередатчика и определение его некоторых параметров.

    реферат , добавлен 26.04.2012

    Что такое ТСР? Принцип построения транкинговых сетей. Услуги сетей тракинговой связи. Технология Bluetooth - как способ беспроводной передачи информации. Некоторые аспекты практического применения технологии Bluetooth. Анализ беспроводных технологий.

    курсовая работа , добавлен 24.12.2006

    Задачи применения аналого-цифровых преобразователей в радиопередатчиках. Особенности цифро-аналоговых преобразователей (ЦАП) для работы в низкочастотных трактах, системах управления и специализированных быстродействующих ЦАП с высоким разрешением.

    курсовая работа , добавлен 15.01.2011

    Основные характеристики видео. Видеостандарты. Форматы записи. Методы сжатия. Современные мобильные видеоформаты. Программы, необходимые для воспроизведения видео. Современные видеокамеры. Носители цифрового видео. Спутниковое телевидение.

    реферат , добавлен 25.01.2007

    Что такое Bluetooth? Существующие методы решения отдельных задач. "Частотный конфликт". Конкуренты. Практический пример решения. Bluetooth для мобильной связи. Bluetooth-устройства. Декабрьский бум. Кто делает Bluetooth-чипы? Харольд Голубой Зуб.

    реферат , добавлен 28.11.2005

    Расчёт передатчика и цепи согласования. Расчёт структурной схемы и каскада радиопередатчика, величин элементов и энергетических показателей кварцевого автогенератора. Нестабильность кварцевого автогенератора и проектирование радиопередающих устройств.

    курсовая работа , добавлен 03.12.2010

    Современные виды электросвязи. Описание систем для передачи непрерывных сообщений, звукового вещания, телеграфной связи. Особенности использования витой пары, кабельных линий, оптического волокна. Назначение технологии Bluetooth и транковой связи.

    реферат , добавлен 23.10.2014

    Основные тенденции развития рынка данных дистанционного зондирования Земли в последнее десятилетие. Современные космические ДДЗ высокого разрешения. Спутники сверхвысокого разрешения. Перспективные картографические комплексы Cartosat-1 и Cartosat-2.