Вирусология. Контрольные вопросы Репродукция днкгеномных вирусов основные этапы, особенности репродукции

Процесс репродукции вирусов условно можно разделить на 2 фазы. Пер­вая фаза включает 3 стадии : 1) адсорбцию вируса на чувствительных клетках; 2) проникновение вируса в клетку; 3) депротеинизацию вируса. Вторая фаза включает стадии реализации вирусного генома : 1) транскрипцию, 2) трансля­цию, 3) репликацию, 4) сборку, созревание вирусных частиц и 5) выход вируса из клетки.

Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. с прикрепления вируса к поверхности клетки.

Адсорбция представляет собой специфическое связывание вирионного белка (антирецептора) с комплементарной структурой клеточной поверхности — клеточным рецептором. По химической природе рецепторы, на которых фикси­руются вирусы, относятся к двум группам: мукопротеидным и липопротеидным. Вирусы гриппа, парагриппа, аденовирусы фиксируются на мукопротеидных рецепторах. Энтеровирусы, вирусы герпеса, арбовирусы адсорбируются на липопротеидных рецепторах клетки. Адсорбция происходит лишь при наличии определённых электролитов, в частности ионов Са2+, которые нейтрализуют из­быточные анионные заряды вируса и клеточной поверхности и уменьшают электростатическое отталкивание Адсорбция вирусов мало зависит от темпера­туры Начальные процессы адсорбции носят неспецифический характер, явля­ются результатом электростатического взаимодействия положительно и отрица­тельно заряженных структур на поверхности вируса и клетки, а затем наступает специфическое взаимодействие прикрепительного белка вириона со специфи­ческими группировками на плазматической мембране клетки. Простые вирусы человека и животных содержат прикрепительные белки в составе капсида. У сложно организованных вирусов прикрепительные белки входят в состав супер-капсида. Они могут иметь форму нитей (фибры у аденовирусов), либо шипов, грибоподобных структур у миксо-, ретро-, рабдо- и других вирусов. Вначале происходит единичная связь вириона с рецептором — такое прикрепление не­прочное — адсорбция носит обратимый характер. Чтобы наступила необратимая адсорбция, должы появиться множественные связи между рецептором вируса и рецептором клетки, т. е. стабильное мультивалентное прикрепление. Количество специфических рецепторов на поверхности одной клетки составляет 10 4 -10 5 . Рецепторы для некоторых вирусов, например, для арбовирусов. содержатся на клетках как позвоночных, так и беспозвоночных, для других вирусов только на клетках одного или нескольких видов.

Проникновение вирусов человека и животных в клетку происходит двумя путями: 1) виропексисом (пиноцитозом); 2) слиянием вирусной суперкапсидной оболочки е клеточной мембраной. Бактериофаги имеют свой механизм проник­новения, так называемый шприцевои, когда в результате сокращения белкового отростка фага нуклеиновая кислота как бы впрыскивается в клетку.

Депротеинизация вируса освобождение геиома вируса от вирусных за­щитных оболочек происходит либо с помощью вирусных ферментов, либо с помощью клеточных ферментов. Конечными продуктами депротеинизации яв­ляются нуклеиновые кислоты или нуклеиновые кислоты, связанные с внутрен­ним вирусным белком. Затем имеет место вторая фаза вирусной репродукции, ведущая к синтезу вирусных компонентов.

Транскрипция — переписывание информации с ДНК или РНК вируса на и-РНК по законам генетического кода.

Трансляция — процесс перевода генетической информации, содержащейся в и-РНК, на специфическую последовательность аминокислот.

Репликация — процесс синтеза молекул нуклеиновых кислот, гомологич­ных вирусному геному.

Реализация генетической информации у ДНК-содержащих вирусов идёт так же, как и в клетках:

ДНК транскрипция и-РНК трансляция белок

РНК транскрипция и-РНК трансляция белок

У вирусов с позитивным РНК-геномом (тогавирусы, пикорнавирусы) транскрипция отсутствует:

РНК трансляция белок

У ретровирусов — уникальный путь передачи генетической информации:

РНК обратная транскрипция ДНК транскрипция и-РНК трансляция белок

ДНК интегрируется с геномом клетки-хозяина (провирус).

После наработки клеткой вирусных компонентов наступает последняя стадия вирусной репродукции сборка вирусных частиц и выход вирионов из клетки. Выход вирионов из клетки осуществляется двумя путями: 1) путём «взрыва» клетки, в результате чего клетка разрушается. Этот путь присущ про­стым вирусам (пикорна-, рео-, папова- и аденовирусам), 2) выход из клеток пу­тём почкования. Присущ вирусам, содержащим суперкапсид. При этом способе клетка сразу не погибает, может дать многократное вирусное потомство, пока не истощатся её ресурсы.

Методы культивирования вирусов

Для культивирования вирусов в лабораторных условиях используются ледуюшие живые объекты: 1) культуры клеток (тканей, органов); 2) куриные мбрионы; 3) лабораторные животные.

Культуры клеток

Наибольшее распространение имеют однослойные культуры клеток, которые можно разделить на 1) первичные (первично трипсинизированные), 2) полуперевиваемые (диплоидные) и 3) перевиваемые.

По происхождению они классифицируются на эмбрионштьные, опухолевые и из взрослых организмов; по морфогенезу — на фибробластные, эпителиальные и др.

Первичные культуры клеток — это клетки какой-либо ткани человека или животного, которые имеют способность расти в виде монослоя на пластмассо­вой или стеклянной поверхности, покрытой специальной питательной средой. Срок жизни таких культур ограничен. В каждом конкретном случае их получа­ют из ткани после механического измельчения, обработки протеолитическими ферментами и стандартизации количества клеток. Первичные культуры, полу­ченные из почек обезьян, почек эмбриона человека, амниона человека, куриных эмбрионов, широко используются для выделения и накопления вирусов, а также для производства вирусных вакцин.

Полуперевиваемые (или диплоидные ) культуры клеток — клетки одного типа, способные in vitro выдерживать до 50-100 пассажей, сохраняя при этом свой исходный диплоидный набор хромосом. Диплоидные штаммы фибробластов эмбриона человека используются как для диагностики вирусных инфек­ций, так и при производстве вирусных вакцин.

Перевиваемые клеточные линии характеризуются потенциальным бес­смертием и гетероплоидным кариотипом.

Источником перевиваемых линий могут быть первичные клеточные культуры (например, СОЦ, ПЭС, ВНК-21 — из почек однодневных сирийских хомяков; ПМС — из почки морской свинки и др.) отдельные клетки которых об­наруживают тенденцию к бесконечному размножению in vitro. Совокупность изменений, приводящих к появлению из клеток таких особенностей, называют трансформацией, а клетки перевиваемых тканевых культур — трансформиро­ванными.

Другим источником перевиваемых клеточных линий являются злокачест­венные новообразования. В этом случае трансформация клеток происходит in vivo. Наиболее часто в вирусологической практике применяются такие линии перевиваемых клеток: HeLa — получена из карциномы шейки матки; Нер-2 — из карциномы гортани; Детройт-6 — из метастаза рака лёгкого в костный мозг; RH — из почки человека.

Для культивирования клеток необходимы питательные среды, которые по своему назначению делятся на ростовые и поддерживающие. В составе росто­вых питательных сред должно содержаться больше питательных веществ, чтобы обеспечить активное размножение клеток для формирования монослоя. Поддерживающие среды должны обеспечивать лишь переживание клеток в уже сформированном монослое при размножении в клетке вирусов.

Широкое применение находят стандартные синтетические среды, напри­мер, синтетическая среда 199 и среда Игла. Независимо от назначения все пита­тельные среды для культур клеток конструируются на основе сбалансированно­го солевого раствора. Чаще всего им является раствор Хенкса. Неотъемлемый компонент большинства ростовых сред — сыворотка крови животных (телячья, бычья, лошадиная), без наличия 5-10% которой размножение клеток и форми­рование монослоя не происходит. В состав поддерживающих сред сыворотка не входит.

Выделение вирусов в культурах клеток и методы их индикации.

При выделении вирусов из различных инфекционных материалов от больного (кровь, моча, фекалии, слизистые отделяемые, смывы из органов) применяют культуры клеток, обладающие наибольшей чувствительностью к предполагаемому вирусу. Для заражения используют культуры в пробирках с хорошо развитым монослоем клеток. Перед заражением клеток питательную среду удаляют и в каждую пробирку вносят по 0,1-0,2 мл взвеси испытуемого материала, предварительно обработанного антибиотиками для уничтожения бактерий и грибов. После 30-60 мин. контакта вируса с клетками удаляют избы­ток материала, вносят в пробирку поддерживающую среду и оставляют в тер­мостате до выявления признаков размножения вируса.

Индикатором наличия вируса в заражённых культурах клеток может слу­жить:

1) развитие специфической дегенерации клеток — цитопатическое действие ви­руса (ЦПД), которое имеет три основных типа: кругло- или мелкоклеточная дегенерация; образование многоядерных гигантских клеток — симпластов; развитие очагов клеточной пролиферации, состоящих из нескольких слоев клеток;

2) обнаружение внутриклеточных включений, располагающихся в цитоплазме и ядрах пораженных клеток;

3) положительная реакция гамагтлютинации (РГА);

4) положительная реакция гемадсорбции (РГАдс);

5) феномен бляшкообразования: монослой зараженных вирусом клеток покры­вается тонким слоем агара с добавлением индикатора нейтрального красно­го (фон — розовый). При наличии вируса в клетках образуются бесцветные зоны («бляшки») на розовом фоне агара.

6) при отсутствии ЦПД или ГА можно поставить реакцию интерференции: ис­следуемая культура повторно заражается вирусом, вызывающим ЦПД. В по­ложительном случае ЦПД будет отсутствовать (реакция интерференции по­ложительная). Если в исследуемом материале вируса не было, наблюдается ЦПД.

Выделение вирусов в куриных эмбрионах.

Для вирусологических исследований используют куриные эмбрионы 7-12-дневного возраста.

Перед заражением определяют жизнеспособность эмбриона. При овоско-пировании живые эмбрионы подвижны, хорошо виден сосудистый рисунок. Простым карандашом отмечают границы воздушного мешка. Заражают кури­ные эмбрионы в асептических условиях, стерильными инструментами, предва­рительно обработав скорлупу над воздушным пространством йодом и спиртом.

Методы заражения куриных эмбрионов могут быть различны: нанесение вируса на хорион-аллантоисную оболочку, в амниотическую и аллантоисную полости, в желточный мешок. Выбор метода заражения зависит от биологиче­ских свойств изучаемого вируса.

Индикация вируса в курином эмбрионе производится по гибели эмбрио­на, положительной реакции гемагглютинации на стекле с аллантоисной или амниотической жидкостью, по фокусным поражениям («бляшкам») на хорион-аллантоисной оболочке.

III. Выделение вирусов на лабораторных животных.

Лабораторные животные могут быть использованы для выделения виру­сов из инфекционного материала, когда невозможно применить более удобные системы (культуры клеток или куриные эмбрионы). Берут преимущественно новорождённых белых мышей, хомяков, морских свинок, крысят. Заражают животных по принципу цитотропизма вируса: пневмотропные вирусы вводятся интраназально, нейротропные — интрацеребрально, дерматотропные — на кожу.

Индикация вируса основана на появлении признаков заболевания у жи­вотных, их гибели, патоморфологических и патогистологических изменений в тканях и органах, а также по положительной реакции гемагглтотинации с экс­трактами из органов.

Этапы репродукции вируса

Парамиксовирусы с помощью гликопротеиновых рецепторов адсорбируются на чувствительных клетках хозяина. Проникновение вириона в клетки происходит путем рецепторного эндо-цитоза или при слиянии вирусной оболочки с цитоплазматической мембраной. Репликация вирусной РНК происходит в цитоплазме инфицированных клеток. При формировании вирионов происходит модификация отдельных участков цитоплазматической мембраны клетки-хозяина за счет встраивания в нее с наружной стороны вирусных гликопротеинов, а с внутренней - мембранного белка. К модифицированным участкам клеточной мембраны по актиновым нитям цитоскелета транспортируются вирусные нуклеокапсиды. Выход вирусных частиц осуществляется путем почкования. В цитоплазме инфицированных клеток образуются ацидофильные включения.

Антигенная структура и антигенная вариабельность

Антигенная структура вируса изучена слабо. Морфологическое сходство с вирусом кори человека дало возможность предположить аналогичность их антигенного состава. Основные антигены вируса кори -- гемагглютинин, белок F и нуклеокапсидный белок NP. AT к гемагглютинину и F-протеину проявляют цитотоксическое действие, направленное против инфицированных клеток.

Антигенная вариабельность. Вирус чумы в иммунобиологическом отношении однороден, в то же время по происхождению и некоторым биологическим особенностям его штаммы разделяют на две подгруппы: классические и вариантные. Классические штаммы высокопатогенны и проявляют строгую видовую специфичность.

Гемагглютинирующие и гемадсорбирующие свойства

Вирусная оболочка состоит из трех белков: гемагглютинина (Н), белка слияния (F) и матриксного (М). Также в серологических реакциях у вируса выявлены комплементсвязывающий, преципитирующий, нейтрализующий и гемагглютинирующие антигены. В связи с этим вирус способен нерегулярно агглютинировать эритроциты цыплёнка и морской свинки. Феномен гемагглютинации у вируса считают неспецифическим.

Считается, что рецепторами для адсорбции вируса являются сиаловые кислоты, имеющиеся на мембране макрофагов. В то же время установлено, что вирус чумы плотоядных лишен нейраминидазной активности. Поэтому связывание гемагглютинина с сиаловыми кислотами мембраны носит довольно слабый, лабильный характер, что снижает для вируса опасность "застрять" на поверхности клетки.

Особенности культивирования в различных живых системах

Первые опыты по культивированию вируса чумы плотоядных в эксплантатах ткани проводил Mitscheriich в 1938 г. Позднее его размножали в эсплантатах селезенки, мезентериальных лимфоузлов, легких и тестикул 10-14-дневных щенят. Авторы провели 19 пассажей, при этом титр вируса в эксплантатах селезенки достиг 2?104 ИД/г. Вирус чумы плотоядных активно размножается в первичных культурах клеток почки собак, хорьков, легких собак и хорьков; в первичной культуре клеток почки щенят 3-4 дневного возраста. В этих культурах на среде 199 с добавлением 20% сыворотки телят вирус образует бляшки под агаровым покрытием. В клетках HeLa и линии клеток печени человека вирус не вызывал ЦПЭ.

К вирусу чумы чувствительны и различные культуры клеток после его адаптации пассированием в них. В 1959 году впервые был выделен вирус от больных чумой собак путем культивирования в трипсинизированных кусочков легких или почек. В последующие годы он был также выделен в первичной культуре почек собаки, КРС, овцы, обезьяны, фибробластов эмбрионов кур и перепелов и др. К вирусу чувствительны и перевиваемые линии клеток Hela и Vero. При размножении некоторые штаммы вируса вызывают ЦПД, которое характеризуется зернистостью и округлением клеток с последующим разрушением монослоя и образованием многоядерных клеток и синцитий. Для выделения и поддержания в лабораторных условиях вируса используют молодых щенков. Однако значительно чувствительнее тхорзофретки. Материалами при выделении вируса в культуре клеток служат селезенка, печень, почка.

Вирус размножается в эмбрионах кур при инфицировании на хорионаллантоисную оболочку (ХАО), в аллантоисную полость и желточный мешок. Этот метод успешно используют также и для определения титра вируса на эмбрионах 8-9 -суточного возраста. Вирус титруют на ХАО. При размножении вируса у зараженных эмбрионов появляются изменения главным образом на хорион-аллантоисной оболочке в виде отечности и образования светло-серых узелков величиной с просяное зерно или тяжей светло-серого цвета.

При сравнительном изучении репродукции 3-х штаммов вируса чумы плотоядных на различных клеточных системах установлено, что у 1-го из них (шт. Рокборн) отсутствовало выраженное цитопатическое дейтвие, 2-й штамм накапливался в титре 3,5-5,0 lg ТЦДщ/wi и шт. Акбар-37 накапливался в титре 5,0-6,5 lg ТЦД50/мл (17). Штаммы, адаптированные к куриным эмбрионам, хорошо развиваются в культуре фибробластов куриных эмбрионов, перевиваемых линиях клеток HeLa ("бессмертные" клетки, не имеющие предела Хейфлика), Нер (клетки рака гортани)и др. Максимальное накопление адаптированных штаммов в культуре клеток отмечено на 8-9-й день. Вирус репродуцируется в культуре альвеолярных макрофагов легких собак. Через 2-6 дней в ней формируются характерные круглые многоядерные гигантские клетки, которые через 1-2 недель исчезают с образованием синцития. Адаптированный к клеткам Vero (клетки почки африкаской зеленой мартышки) шт. Green вируса чумы плотоядных способен образовывать бляшки в клетках Нер-2, BS-C-1 и HeLa, но не в клетках Vero и культуре клеток почки собак. Адаптированный к куриным эмбрионам или культуре клеток, вирус может размножаться во многих клеточных системах (собак, КРС, обезьян, человека). Вирус чумы плотоядных вызывает цитопатический эффект и титры его выше в роллерных культурах, чем в стационарных.

Предложен метод крупномасштабного культивирования вируса чумы плотоядных на микроносителях Gelaspker M (Lachema, Bruc) (диаметр 150-200 мкм), для чего клетки куриных эмбрионов или Vero выращивают в виде псевдосуспензионной культуры. При этом биологическое накопление вируса более чем в 10 раз превышало таковое при использовании стационарных культур.

Разработан метод дифференциации патогенных и аттенуированных штаммов вируса чумы плотоядных in vitro. МонАТ реагируют с нуклеокапсидным АГ аттенуированного шт. Onderstepoort, который культивируется в клетках Vero и не реагирует с патогенными шт. А75/17 и СН84, культивируемыми в первичных культурах клеток собак. Однако после нескольких пассажей в клетках Vero штаммы приобретали эпигон, реагирующий с монАТ, одновременно утрачивали патогенность для собак.

Шт. Д84-1 ВЧС, адаптированный к культуре фибробластов КЭ, вызывает выраженные ЦПИ в культуре клеток и незначительное бляшкообразование на ХАО. Шт. Д84-1 генетически стабилен и нейровирулентен для мышат.


1. Адсорбция - процесс прикрепления вирусных частиц к поверхности клетки.
2. Инъекция - проникновение вирусной частицы в клетку и высвобождение вирусной НК из белкового капсида (у бактериофагов - введение в клетку НК).
3. Репликация молекул вирусной НК - происходит за счет нуклеотидов в клетке.
4. Синтез вирусных белков (белков капсида и ферментов) - происходит на рибосомах клетки.
5. Сборка вирусных частиц - осуществляется из синтезированных пораженной клеткой вирусных НК и вирусных белков.
6. Выход вирусных частиц из пораженной клетки. У бактерий часто сопровождается лизисом (разрушением) клетки, у эукариот происходит путем выпячивания оболочки клетки и "выталкивания" вирусных частиц в окружающую среду. В целом есть 3 способа: а)литический (все вирусы выходят во внешнюю среду, клетка погибает), б)персистентный (постепенный выход), в)латентный (в течение некоторого времени клетки не обнаруживают вирус).

Принципы классификации вирусов:

Вирусы составляют царство Vira, которое подразделено по типу нуклеиновой кисло­ты на два подцарства - рибовирусы и дезоксирибовирусы. Подцарства делятся на семейства, которые в свою очередь подразделяются на роды. Понятие о виде вирусов пока еще четко не сформулировано, так же как и обозначение раз­ных видов.

В качестве таксономических характеристик первостепенное значение придается типу нуклеиновой кислоты и ее молекулярно-биологическим признакам: двунитевая, однонитевая, сегменти­рованная, несегментированная, с повторяющимися и инверти­рованными последовательностями и др. Однако в практической работе прежде всего используются характеристики вирусов, по­лученные в результате электронно-микроскопических и иммуно­логических исследований: морфология, структура и размеры вириона, наличие или отсутствие внешней оболочки (суперкапсида), антигены, устойчивость к высокой температуре, рН, детергентам и т. д.

В настоящее время вирусы человека и животных включены в состав 18 семейств. Принадлежность вирусов к определенным семействам определяется типом нуклеиновой кис­лоты, структурой, целостностью или фрагментацией генома, а также наличием или отсутствием внешней оболочки. При определении принадлежности к семейству ретровирусов обязательно учитывается наличие обратной транскриптазы.

Репродукция вирусов

Репродукция вируса в клетке происходит в несколько фаз:

Первая фаза - адсорбция вируса на поверхности клетки, чувстви­тельной к данному вирусу.

Вторая фаза - проникновение вируса в клетку хозяина путем виропексиса.

Третья фаза - «раздевание» вирионов, освобождение нуклеи­новой кислоты вируса от суперкапсида и капсида. У ряда вирусов проникновение нуклеиновой кислоты в клетку происходит путем сли­яния оболочки вириона и клетки-хозяина. В этом случае вторая и тре­тья фазы объединяются в одну.

В зависимости от типа нуклеиновой кислоты этот процесс совер­шается следующим образом.

1. Репродукция происходит в ядре: аденовирусы, герпес, паповавирусы. Используют ДНК-зависимую РНК - полимеразу клетки.

2. Репродукция происходит в цитоплазме: вирусы имеют свою ДНК-зависимую РНК полимеразу.

1. Рибовирусы с позитивным геномом (плюс-нитиевые): пикорна-, тога-, коронавирусы. Транскрипции нет.

РНК ->белок

2. Рибовирусы с негативным геномом (минус- нитевые): грипп, корь, паротит, орто-, парамиксовирусы.

(-)РНК -> иРНК -> белок (иРНК комплементарная (-)РНК ). Этот процесс идет при участии специального вирусного фермен­та - вирионная РНК-зависимая PHK-полимераза (в клетке такого фермента быть не может).

3. Ретровирусы

(-)РНК -> ДНК -> иРНК ->белок (и РНК гомологична РНК ). В этом случае процесс образования ДНК на базе (-)РНК возмо­жен при участии фермента - РНК-зависимой ДНК-полимеразы (об­ратной транскриптазы или ревертазы)

Четвертая фаза - синтез компонентов вириона. Нуклеиновая кис­лота вируса образуется путем репликации. На рибосомы клетки транс­лируется информация вирусной иРНК, и в них синтезируется вирус-специфический белок.

Пятая фаза - сборка вириона. Путем самосборки образуются нуклеокапсиды.

Шестая фаза - выход вирионов из клетки. Простые вирусы, на­пример, вирус полиомиелита, при выходе из клетки разрушают ее. Сложноорганизованные вирусы, например, вирус гриппа, выходят из клетки путем почкования. Внешняя оболочка вируса (суперкапсид) формируется в процессе выхода вируса из клетки. Клетка при таком процессе на какое-то время остается живой.

Описанные типы взаимодействия вируса с клеткой называются продуктивными, так как приводят к продукции зрелых вирионов.

Иной путь - интегративный - заключается в том, что после проник­новения вируса в клетку и "раздевания" вирус­ная нуклеиновая кисло­та интегрирует в клеточ­ный геном, то есть встраивается в опреде­ленном месте в хромосо­му клетки и затем в виде так называемого прови-руса реплицируется вме­сте с ней. Для ДНК- и РНК-содержащих виру­сов этот процесс совер­шается по-разному. В первом случае вирусная ДНК интегрирует в кле­точный геном. В случае РНК-содержащих виру­сов вначале происходит обратная транскрипция: на матрице вирусной РНК при участии фермента "обратной транскриптазы" образуется ДНК, которая встраи­вается в клеточный геном. Провирус несет дополнительную генетичес­кую информацию, поэтому клетка приобретает новые свойства. Виру­сы, способные осуществить такой тип взаимодействия с клеткой, на­зываются интегративными. К интегративным вирусам относятся неко­торые онкогенные вирусы, вирус гепатита В, вирус герпеса, вирус им­мунодефицита человека, умеренные бактериофаги.

Кроме обычных вирусов, существуют прионы - белковые инфек­ционные частицы, не содержащие нуклеиновую кислоту. Они имеют вид фибрилл, размером до 200 нм. Вызывают у человека и у животных медленные инфекции с поражением мозга: болезнь Крейтцфельда-Якоба, куру, скрепи и другие.

20. Фаги (вирусы микробов): морфология и ультраструктура. Фазы взаимодействия вирулентного и умеренного фагов с бактериальной клеткой. Определение активности (титра) бактериальной клетки. Профаг. Фаготипирование микроорганизмов, значение. Практическое использование фагов.

Явление бактериофагии открыл и изучил французский микробио­лог д"Эррель. В 1917 г. он наблюдал лизис культуры бактерий дизентерии после внесения в нее фильтрата испражнений больного, выздоравлива­ющего от дизентерии. При многократных пассажах, то есть переносе из одной культуры в другую, фильтраты сохраняли свою лизирующую ак­тивность и даже усиливали ее. Ученый сделал из этого правильный вы­вод о том, что лизирующий агент - живой и при пассажах размножается в бактериях. Д"Эррель назвал этот агент бактериофагом (лат. phagos -пожирающий), а само явление лизиса - бактериофагией.

Позже было подтверждено, что бактериофаг - живой. Это вирус бак­терий, он размножается в бактериях, вызывая их лизис. Добавление бак­териофага в культуру бактерий на жидкой питательной среде вызывает просветление среды. На плотных питательных средах при посеве смеси бактерий и бактериофага на фоне сплошного роста бактерий появля­ются стерильные пятна или негативные колонии фагов.

Бактериофаги специфичны, то есть лизируют определенные виды бактерий. Отсюда их названия: дизентерийный бактериофаг, стафи­лококковый бактериофаг. Обнаружены фаги не только бактерий, но и актиномицетов.

В практической медицине бактериофаги нашли применение как лечебные и профилактические средства,

Важное значение имеет то, что на примере бактериофагии были открыты и изучены многие проблемы общей вирусологиии и молекуляр­ной генетики.

Структура бактериофагов

Размеры бактериофагов колеблются от 20 нм до 200 нм. Как все вирусы, содержат ДНК, или РНК, и белковый капсид. Чаще всего встре­чаются и лучше изучены бактериофаги, имеющие форму сперматозои­да или головастика. Состоят они из головки, хвостового отростка, батальной пластинки с короткими шинами и хвостовыми нитями. Внутри головки располагается спи­рально скрученная пить ДНК, по­крытая белковым капсидом. Хвостовой отросток - что полый цилиндрический стержень, окру­женный сократительным чехлом. Базальная пластинка и нити осу­ществляют процесс адсорбции бактериофага на бактериальной клетке. Существуют бактериофаги, имеющие другое строе­ние: с короткими отростком, с отростком без сократительного чехла, без отростка, нитевидной формы.

Взаимодействие бактериофага с бактериальной клеткой

Как все вирусы, бактериофаги не размножаются на питательных средах. Их размножение происходит только в чувствительных к ним бактериальных клетках, в процессе взаимодействия, в котором наб­людаются те же фазы, что при взаимодействии других вирусов с клет­кой.

Адсорбция бактериофага . Как все вирусы, фаги неподвижны, и стол­кновение с бактерией происходит случайно, затем адсорбция стано­вится прочной, если у клетки имеются на поверхности фагоспецифические рецепторы. Фаги, имеющие сократительный чехол, ад­сорбируются с помощью хвостового отростка.

Внедрение фага внутрь клетки . Под дей­ствием фермента лизоцима, который находится в хвостовом сегменте, в клеточной стенке бакте­рии образуется отверстие. Через это отверстие в ре­зультате сокращения хво­стового чехла внутрь бак­териальной клетки переходит ДНК фага. Белковый капсид остает­ся снаружи.

Синтез ДНК и белка бактериофага . В клетке прекращается синтез бактериальных белков. Образуются фаговые ДНК, а на рибосомах бактерий синтезируются молекулы фагового белка.

Формирование фага. Сборка зрелых фагов из ДНК и капсида про­исходит в цитоплазме клетки. Выход зрелых фагов из клетки происхо­дит при разрушении бактерий с помощью лизоцима, а затем зрелые фаги внедряются в новые клетки.

"Урожай" фага, в зависимости от его вида, составляет от 20 до 200 частиц. Весь цикл взаимодействия, занимающий от 10 минут до нескольких часов, называется литическим циклом, а фаг при таком вза­имодействии - вирулентным .

В отличие от вирулентных, умеренные фаги не лизируют бактерии. Их геном, проникнув в клетку, встраивается в хромосому бактерии и в дальнейшем остается в хромосоме в виде профага и реплицируется вме­сте с ней. Бактерии, несущие профаг, называются лизогенными, а само явление - лизогенией. Лизогенные бактерии встречаются очень часто. Профаг, находясь в геноме бактерии, придает ей какие-либо новые свой­ства. Так, например, продукция экзотоксина у палочек дифтерии и бо­тулизма связана с наличием профага.

В определенных условиях (воздействия температуры, химических веществ и др.) профаги могут превратиться в вирулентные бактерио­фаги. Размножаясь, они лизируют бактерии и могут переходить в дру­гие бактериальные клетки. При выходе из хромосомы профаг может захватить соседние гены бактериальной хромосомы и при заражении другой бактерии, встроившись в ее хромосому, передать эти гены. Пе­редача генетического материала от одной бактерии к другой с помо­щью умеренного бактериофага называется трансдукцией. Таким об­разом, могут передаваться такие признаки, как устойчивость к антиби­отикам, способность продуцировать какие-либо ферменты. Умеренные бактериофаги применяются в генетической инженерии в качестве век­тора - переносчика генов.

Практическое значение бактериофагов

Препараты бактериофагов применяются для диагностики, профи­лактики и лечения. Фагодиагностика основана на специфичности бак­териофагов: видоспецифические бактериофаги лизируют только опре­деленные виды бактерий. Более того, бактерии одного и того же вида различаются по чувствительности к разным типовым бактериофагам, Таким образом можно с помощью набора типовых бактериофагов определять фаговары стафилококков, сальмонелл, вибрионов. Фаготипирование помогает установить источник инфекции и пути передачи.

Лечебно-профилактическое действие фагов основано на их литической активности.

Для получения препарата бактериофага культуру бактерий зара­жают бактериофагом. На следующий день лишрованную культуру фильтруют через бактериальный фильтр. К фильтрату в качестве кон­серванта добавляют хинозол.

Для количественной характеристики бактериофагов используют такой критерий, как титр бактериофага. Титр фага можно выразить двумя показателями:

1) наибольшее разведение препарата, при котором бактериофаг лизирует соответствующие бактерии:

2) количество активных корпускул бактериофага в 1 мл препарата. Методы титрования бактериофага:

1) метод серийных разведении в пробирках с жидкой питательной средой по Аппсльману;

2) двуслойный агаровый метод, при котором подсчитывают число негативных колоний фага на фоне сплошного роста бактерий – метод Грациа.

Готовый жидкий препарат бактериофага должен быть совершен­но прозрачным. При кишечных инфекциях препарат применяют вмес­те с раствором питьевой соды, так как кислое содержимое желудка разрушает бактериофаг. Препараты некоторых бактериофагов для инъекций и местного применения выпускают в ампулах. Для приема внутрь препараты бактериофагов выпускаются также в виде таблеток с кислотоустойчивым покрытием, которое в щелочной среде тонкого кишечника растворяется. В качестве покрытия применяется пектин или ацетилфталилцеллюлоза (ЛФП).

В нашей стране выпускаются препараты дизентерийного, сальмонеллезного, коли-протейного, стафилококкового и других бакте­риофагов, а также наборы типовых фагов для фаготипирования ста­филококков, брюшнотифозных и других бактерий.

Репродукция вирусов осуществляется в несколько стадий, последовательно сменяющих друг друга: адсорбция вируса на клетке; проникновение вируса в клетку; «раздевание» вируса; биосинтез вирусных компонентов в клетке; формирование вирусов; выход вирусов из клетки.

Адсорбция . Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбируется на определенных участках клеточной мембраны - так назы-ваемых рецепторах. Клеточные рецепторы могут иметь разную химическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических рецепторов на поверхности одной клетки колеблется от 104 до 105. Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.Проникновение в клетку. Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.«Раздевание». Процесс «раздевания» заключается в удалении защитных вирусных оболочек и освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с клеточной мембраной процесс проникновения вируса в клетку сочетается с первым этапом его «раздевания». Конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.Биосинтез компонентов вируса. Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.Реализация генетической информации вируса осуществляется в соответствии с процессами транскрипции, трансляции и репликации. Формирование (сборка) вирусов. Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически «узнавать» друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, солевых и водородных связей. Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:



1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;

2. Сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала форми-руются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);

3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;

4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).

Выход вирусов из клетки. Различают два основных типа выхода вирусного потомства из клетки. Первый тип - взрывной - характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип - почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.