Корреляционный анализ сравнение двух сигналов. Сигналы и линейные системы

С физической точки зрения корреляционная функция характеризует взаимосвязь или взаимозависимость двух мгновенных значений одного или двух различных сигналов в моменты времени и . В первом случае корреляционную функцию часто называют автокорреляционной, а во втором - взаимнокорреляционной. Корреляционные функции детерминированных процессов зависят только от .

Если заданы сигналы и , то корреляционные функции определяют следующими выражениями:

- взаимнокорреляционная функция; (2.66)

- автокорреляционная функция. (2.67)

Если и - два периодических сигнала с одинаковым периодом T , то очевидно, что их корреляционная функция тоже является периодической с периодом Т и, следовательно, она может быть разложена в ряд Фурье.

Действительно, если в выражении (2.66) разложим в ряд Фурье сигнал , то получим

(2.68)

где и - комплексные амплитуды n -й гармоники сигналов и соответственно, - комплексно-сопряженный с коэффициент. Коэффициенты разложения взаимно корреляционной функции можно найти как коэффициенты ряда Фурье

. (2.69)

Частотное разложение автокорреляционной функции легко получить из формул (2.68) и (2.69), положив , тогда

. (2.70)

А так как и, следовательно,

, (2.71)

то автокорреляционная функция - четная и поэтому

. (2.72)

Четность автокорреляционной функции позволяет ее разложить в тригонометрический ряд Фурье по косинусам

В частном случае, при , получим:

.

Таким образом, автокорреляционная функция при представляет собой полную среднюю мощность периодического сигнала , равную сумме средних мощностей всех гармоник.

Частотное представление импульсных сигналов

В предыдущем рассмотрении предполагалось, что сигналы непрерывны, однако при автоматической обработке информации часто используются и импульсные сигналы, а также преобразование непрерывных сигналов в импульсные. Это требует рассмотрения вопросов частотного представления импульсных сигналов.

Рассмотрим модель преобразования непрерывного сигнала в импульсную форму, представленную на рис.2.6а.



Пусть на вход импульсного модулятора поступает непрерывный сигнал (рис.2.6б). Импульсный модулятор формирует последовательность единичных импульсов (рис.2.6в) с периодом Т и длительностью импульсов t , причем . Математическую модель такой последовательности импульсов можно описать в виде функции :

(2.74)

где k - номер импульса в последовательности.

Выходной сигнал импульсного модулятора (рис.2.6г) можно представить в виде:

.

На практике желательно иметь частотное представление последовательности импульсов. Для этого функцию , как периодическую, можно представить в виде ряда Фурье:

, (2.75)

- спектральные коэффициенты разложения в ряд Фурье; (2.76)

Частота следования импульсов;

n - номер гармоники.

Подставляя в выражение (2.76) соотношение (2.74), найдем :

.

Подставляя (2.76) в (2.74), получим:

(2.78)

Преобразуем разность синусов, тогда

. (2.79)

Введем обозначение фазы n -ой гармоники

. (2.81)

Таким образом, последовательность единичных импульсов содержит наряду с постоянной составляющей бесконечное число гармоник с уменьшающейся амплитудой. Амплитуда k -ой гармоники определяется из выражения:

При цифровой обработке сигналов проводится дискретизация (квантование) по времени, то есть преобразование непрерывного сигнала в последовательность коротких импульсов. Как показано выше, любая последовательность импульсов имеет довольно сложный спектр, поэтому возникает естественный вопрос, каким образом процесс дискретизации по времени влияет на частотный спектр исходного непрерывного сигнала.

Для исследования этого вопроса рассмотрим математическую модель процесса дискретизации по времени, представленную на рис.2.7а.

Импульсный модулятор (ИМ) представляется в виде модулятора с несущей в виде идеальной последовательности очень коротких импульсов (последовательности d -функций) , период следования которых равен Т (рис.2.7б).

На вход импульсного модулятора поступает непрерывный сигнал (рис.2.7в), а на выходе образуется импульсный сигнал (рис.2.7г).


Тогда модель идеальной последовательности d -функций можно описать следующим выражением

На ранних этапах развития радиотехники вопрос о выборе наилучших сигналов для тех или иных конкретных применений не был очень острым. Это обусловливалось, с одной стороны, относительно простой структурой передаваемых сообщений (телеграфные посылки, радиовещание); с другой, практическая реализация сигналов сложной формы в комплексе с оборудованием для их кодирования, модуляции и обратного преобразования в сообщение оказывалась трудно осуществимой.

В настоящее время ситуация в корне изменилась. В современных радиоэлектронных комплексах выбор сигналов диктуется прежде всего не техническими удобствами их генерирования, преобразования и приема, а возможностью оптимального решения задач, предусмотренных при проектировании системы. Для того чтобы понять, как возникает потребность в сигналах со специально выбранными свойствами, рассмотрим следующий пример.

Сравнение сигналов, сдвинутых во времени.

Обратимся к упрощенной идее работы импульсного радиолокатора, предназначенного для измерения дальности до пели. Здесь информация об объекте измерения заложена в величине - задержке по времени между зондирующим и принятым сигналами. Формы зондирующего и и принятого и сигналов одинаковы при любых задержках.

Структурная схема устройства обработки радиолокационных сигналов, предназначенного для измерения дальности, может выглядеть так, как это изображено на рис. 3,3.

Система состоит из набора элементов, осуществляющих задержку «эталонного» передаваемого сигнала на некоторые фиксированные отрезки времени

Рис. 3.3. Устройство для измерения времени задержки сигналов

Задержанные сигналы вместе с принятым сигналом подаются на устройства сравнения, действующие в соответствии с принципом: сигнал на выходе появляется лишь при условии, что оба входных колебания являются «копиями» друг друга. Зная номер канала, в котором происходит указанное событие, можно измерить задержку, а значит, и дальность до цели.

Подобное устройство будет работать тем точнее, чем в большей степени разнятся друг от друга сигнал и его «копия», смещенная во времени.

Таким образом, мы получили качественное «представление о том, какие сигналы можно считать «хорошими» для данного применения.

Перейдем к точной математической формулировке поставленной проблемы и покажем, что этот круг вопросов имеет непосредственное отношение к теории энергетических спектров сигналов.

Автокорреляционная функция сигнала.

Для количественного определения степени отличия сигнала и и его смещенной во времени копии принято вводить автокорреляционную функцию (АКФ) сигнала , равную скалярному произведению сигнала и копии:

В дальнейшем будем предполагать, что исследуемый сигнал имеет локализованный во времени импульсный характер, так что интеграл вида (3.15) заведомо существует.

Непосредственно видно, что при автокорреляционная функция становится равной энергии сигнала:

К числу простейших свойств АКФ можно отнести ее четность:

Действительно, если в интеграле (3.15) сделать замену переменных то

Наконец, важное свойство автокорреляционной функции состоит в следующем: при любом значении временного сдвига модуль АКФ не превосходит энергии сигнала:

Этот факт непосредственно вытекает из неравенства Коши - Буняковского (см. гл. 1):

Итак, АКФ представляется симметричной кривой с центральным максимумом, который всегда положителен. При этом в зависимости от вида сигнала автокорреляционная функция может иметь как монотонно убывающий, так и колеблющийся характер.

Пример 3,3. Найти АКФ прямоугольного видеоимпульса.

На рис. 3.4,а изображен прямоугольный видеоимпульс с амплитудой U и длительностью Здесь же представлена его «копия», сдвинутая во времени в сторону запаздывания на . Интеграл (3.15) вычисляется в данном случае элементарно на основании графического построения. Действительно, произведение и и отлично от нуля лишь в пределах интервала времени, когда наблюдается наложение сигналов. Из рис. 3.4, о видно, что этот временной интервал равен если сдвиг не превышает длительности импульса. Таким образом, для рассматриваемого сигнала

График такой функции - треугольник, изображенный на рис. 3.4,б. Ширина основания треугольника в два раза больше длительности импульса.

Рис. 3.4. Нахождение АКФ прямоугольного видеоимпульса

Пример 3.4. Найти АКФ прямоугольного радиоимпульса.

Будем рассматривать радиосигнал вида

Зная заранее, что АКФ четна, вычислим интеграл (3.15), полагая . При этом

откуда легко получаем

Естественно, что при величина становится равной энергии этого импульса (см. пример 1.9). Формула (3.21) описывает АКФ прямоугольного радиоимпульса при всех сдвигах , лежащих в пределах Если абсолютное значение сдвига превышает длительность импульса, то автокорреляционная функция будет тождественно обращаться в нуль.

Пример 3.5. Определить АКФ последовательности прямоугольных видеоимпульсов.

В радиолокации широко используются сигналы, представляющие собой пачки из одинаковых по форме импульсов, следующих друг за другом через одинаковый интервал времени. Для обнаружения такой пачки, а также для измерения ее параметров, например положения во времени, создают устройства, которые аппаратурным образом реализуют алгоритмы вычисления АКФ.

Рис. 3.5. АКФ пачки из трех одинаковых видеоимпульсов: а - пачка импульсов; б - график АКФ

На рис. 3.5, в изображена пачка, состоящая из трех одинаковых видеоимпульсов прямоугольной формы. Здесь же представлена ее автокорреляционная функция, вычисленная по формуле (3.15) (рис. 3.5, б).

Хорошо видно, что максимум АКФ достигается при Однако если задержка оказывается кратной периоду последовательности (при в нашем случае), наблюдаются побочные лепестки АКФ, сравнимые по высоте с главным лепестком. Поэтому можно говорить об известном несовершенстве корреляционной Структуры данного сигнала.

Автокорреляционная функция неограниченно протяженного сигнала.

Если требуется рассматривать неограниченно протяженные во времени периодические последовательности, то подход к изучению корреляционных свойств сигналов должен быть несколько видоизменен.

Будем считать, что такая последовательность получается из некоторого локализованного во времени, т. е. импульсного, сигнала, когда длительность последнего стремится к бесконечности. Для того чтобы избежать расходимости получаемых выражений, определим иовую АКФ как среднее значение скалярного произведения сигнала и его копии:

При таком подходе автокорреляционная функция становится равной средней взаимной мощности этих даух сигналов.

Например, желая найти АКФ для неограниченной во времени косинусоиды можно воспользоваться формулой (3.21), полученной для радиоимпульса длительностью а затем перейти к пределу при учитывая определение (3.22). В результате получим

Эта АКФ сама является периодической функцией; ее значение при равно

Связь между энергетическим спектром сигнала и его автокорреляционной функцией.

При изучении материала настоящей главы читатель может подумать, что методы корреляционного анализа выступают как некоторые особые приемы, не имеющие связи с принципами спектральных разложений. Однако это не так. Легко показать, что существует тесная связь между АКФ и энергетическим спектром сигнала.

Действительно, в соответствии с формулой (3.15) АКФ есть скалярное произведение: Здесь символом обозначена смещенная во времени копия сигнала и ,

Обратившись к обобщенной формуле Рэлея (2.42), можно записать равенство

Спектральная плотность смещенного во времени сигнала

Таким образом, приходим к результату:

Квадрат модуля спектральной плотности, как известно, представляет собой энергетический спектр сигнала. Итак, энергетический спектр и автокорреляционная функция связаны преобразованием Фурье:

Ясно, что имеется и обратное соотношение:

Эти результаты принципиально важны по двум причинам. Во-первых, оказывается возможным оценивать корреляционные свойства сигналов, исходя из распределения их энергии по спектру. Чем шире полоса частот сигнала, тем уже основной лепесток автокорреляционной функции и тем совершеннее сигнал с точней зрения возможности точного измерения момента его начала.

Во-вторых, формулы (3.24) и (3.26) указывают путь экспериментального определения энергетического спектра. Часто удобнее вначале получить автокорреляционную функцию, а затем, используя преобразование Фурье, найти энергетический спектр сигнала. Такой прием получил распространение при исследовании свойств сигналов с помощью быстродействующих ЭВМ в реальном масштабе времени.

Соотношением совтк Отсюда следует, что интервал корреляции

оказывается тем меньше, чем выше верхняя граничная частота спектра сигнала.

Ограничения, накладываемые на вид автокорреляционной функции сигнала.

Найденная связь между автокорреляционной функцией и энергетическим спектром дает возможность установить интересный и на первый взгляд неочевидный критерий существования сигнала с заданными корреляционными свойствами. Дело в том, что энергетический спектр любого сигнале, по определению, должен быть положительным [см. формулу (3.25)]. Данное условие будет выполняться далеко не при любом выборе АКФ. Например, если взять

и вычислить соответствующее преобразование Фурье, то

Эта знакопеременная функция не может представлять собой энергетический спектр какого-либо сигнала.

Понятие корреляция означает схожесть. Корреляционная функция сигнала является функцией и определяется выражением

где τ – временной сдвиг сигнала.

При выражение (2.65) принимает вид

где Е - энергия сигнала. Таким образом, при нулевом временном сдвиге корреляционная функция равна энергии сигнала.

Кроме корреляционной функции (2.65) существует взаимно корреляционная функция, которая характеризует взаимную связь между значениями двух сигналов и определяется выражением:

Когда U1(t) и U2(t) являются одним и тем же сигналом U(t), то взаимно корреляционная и корреляционная функция совпадают.

Корреляционная функция принимает максимальное значение только при . Взаимно корреляционная функция двух одинаковых сигналов также достигает максимума при . Для различных сигналов U1(t) и U2(t) максимальное значение функции может достигать не при . Например, взаимно корреляционная функция косинусоиды имеет максимальное значение при .

Рассмотрим корреляционные функции типовых сигналов.

Прямоугольный видеосигнал и его корреляционная функция показаны на рис. 2.24.

Корреляционная функция периодического видеосигнала с периодом Т на основании (2.66) имеет вид:

(2.67)

Корреляционная функция гармонического сигнала равна:

Сигнал и его корреляционная функция показаны на рис 2.25.

Рис. 2.25. Гармонический сигнал (а) и его корреляционная функция (б).

Взаимно корреляционная функция двух гармонических сигналов одинаковой частоты и имеет вид:

(2.69)

Если и , то взаимно корреляционная функция (2.68) равна корреляционной функции гармонического сигнала (2.69).

Взаимно корреляционная функция двух гармонических сигналов с различными частотами равна нулю. Следовательно, гармонические сигналы с различными частотами являются некоррелированными (не схожими) между собой.

Наряду со спектральным подходом к описанию сигналов часто на прак­тике оказывается необходимой характеристика, которая давала бы пред­ставление о некоторых свойствах сигнала, в частности о скорости изменения во времени, а также о длительности сигнала без разложения его на гармо­нические составляющие.

В качестве такой временной характеристики широко используется корреляционная функция сигнала.

Для детерминированного сигнала s (t ) конечной длительности корре­ляционная функция определяется следующим выражением:

где τ - временной сдвиг сигнала.

В данной главе рассматриваются сигналы, являющиеся вещественны­ми функциями времени, и обозначение комплексного сопряжения можно опу­стить:

. (1.78)

Из выражения (1.78) видно, что B s (t ) характеризует степень связи (корреляции) сигналаs ( t ) со своей копией, сдвинутой на величину т по оси времени. Ясно, что функцияB s ( t ) достигает максимума при τ = 0, так как любой сигнал полностью коррелирован с самим собой. При этом

, (1.79)

т. е. максимальное значение корреляционной функции равно энергии сиг­нала.

С увеличением τ функция В 8 (τ) убывает (не обязательно монотонно) и при относительном сдвиге сигналовs (t ) иs (t + τ) на время, превышающее длительность сигнала, обращается в нуль.

Из общего определения корреляционной функции видно, что безразлично, вправо или влево относительно своей копии сдвигать сигнал на величину τ. Поэтому выражение (1.78) можно обобщить следующим образом:

. (1.78)

Это равносильно утверждению, что B s (τ) являетсячетной функцией τ.

Для периодического сигнала, энергия которого бесконечно велика, оп­ределение корреляционной функции с помощью выражений (1.129) или (1.129") неприемлемо. В этом случае исходят из следующего определения:

При таком определении корреляционная функция приобретает размер­ность мощности, причем B Sne р (0) равна средней мощности периодического сигнала. Ввиду периодичности сигналаs( t ) усреднение произведения
или
по бесконечно большому отрезкуТ должно совпадать с усреднением по периодуT 1 . Поэтому выражение (1.79) можно заменить выражением

Входящие в это выражение интегралы суть не что иное, как корреля­ционная функция сигнала на интервале T 1 . Обозначая ее через B sTl ), приходим к соотношению

Очевидно также, что периодическому сигналу s(t ) соответствует и пе­риодическая корреляционная функцияB s пер (τ). Период функцииB s пер (τ) совпадает с периодомТ 1 исходного сигналаs( t ). Например, для простейшего (гармонического) колебания
корреляционная функция

При τ=0
есть средняя мощность гармонического колебания с амплитудойА 0 . Важно отметить, что корреляционная функция
не зависит от начальной фазы колебания.

Для оценки степени связи между двумя различными сигналами s 1 ( t ) иs 2 ( t ) используется взаимная корреляционная функция, определяемая общим выражением

Для вещественных функций s 1 (t) иs 2 (t)

Рассмотренная выше корреляционная функция В s (τ) является частным слу­чаем функции
, когдаs 1 ( t ) =s 2 ( t ).

В отличие от
взаимная корреляционная функция не обязательно является чет­ной относительно τ. Кроме того, взаимная корреляционная функцияне обязательно достигает максимума приτ = 0.

3 Корреляционный анализ сигналов

Смысл спектрального анализа сигналов заключается в изучении того, как сигнал может быть представлен в виде суммы (или интеграла) простых гармонических колебаний и как форма сигнала определяет структуру распределения по частотам амплитуд и фаз этих колебаний. В противоположность этому задачей корреляционного анализа сигналов является определение меры степени сходства и различия сигналов или сдвинутых по времени копий одного сигнала. Введение меры открывает пути к проведению количественных измерений степени схожести сигналов. Будет показано, что существует определенная взаимосвязь между спектральными и корреляционными характеристиками сигналов.

3.1 Автокорреляционная функция (АКФ)

Автокорреляционная функция сигнала с конечной энергией – это значение интеграла от произведения двух копий этого сигнала, сдвинутых относительно друг друга на время τ, рассматриваемое в функции этого временного сдвига τ:

Если сигнал определен на конечном интервале времени , то его АКФ находится как:

,

где - интервал перекрытия сдвинутых копий сигнала.

Считается, что чем больше значение автокорреляционной функции при данном значении , тем в большей степени две копии сигнала, сдвинутые на промежуток времени , похожи друг на друга. Поэтому корреляционная функция и является мерой сходства для сдвинутых копий сигнала.

Вводимая таким образом мера сходства для сигналов, имеющих форму случайных колебаний вокруг нулевого значения, обладает следующими характерными свойствами.

Если сдвинутые копии сигнала колеблются примерно в такт друг к другу, то это является признаком их схожести и АКФ принимает большие положительные значения (большая положительная корреляция). Если копии колеблются почти в противофазе, АКФ принимает большие отрицательные значения (антисходство копий сигнала, большая отрицательная корреляция).

Максимум АКФ достигается при совпадении копий, то есть при отсутствии сдвига. Нулевые значения АКФ достигаются при сдвигах, при которых не заметно ни сходства, ни антисходства копий сигнала (нулевая корреляция,



отсутствие корреляции).

На рис.3.1 изображен фрагмент реализации некоторого сигнала на интервале времени от 0 до 1 с. Сигнал случайным образом колеблется вокруг нулевого значения. Поскольку интервал существования сигнала конечен, то конечна и его энергия. Его АКФ можно вычислить в соответствии с уравнением:

.

Автокорреляционная функция сигнала, вычисленная в MathCad в соответствии с этим уравнением, представлена на рис. 3.2. Корреляционная функция показывает не только то, что сигнал похож сам на себя (сдвиг τ=0), но и то, что некоторой схожестью обладают и копии сигнала, сдвинутые друг относительно друга приблизительно на 0.063 с (боковой максимум автокорреляционной функции). В противоположность этому копии сигнала сдвинутые на 0.032 с, должны быть антипохожи дуг на друга, то есть быть в некотором смысле противоположными друг другу.

На рис.33 показаны пары этих двух копий. По рисунку можно проследить, что понимается под похожестью и антипохожестью копий сигнала.

Корреляционная функция обладает следующими свойствами:

1. При τ = 0 автокорреляционная функция принимает наибольшее значение, равное энергии сигнала

2. Автокорреляционная функция является четной функцией временного сдвига .

3. С ростом τ автокорреляционная функция убывает до нуля

4. Если сигнал не содержит разрывов типа δ - функций, то - непрерывная функция.



5. Если сигнал является электрическим напряжением, то корреляционная функция имеет размерность .

Для периодических сигналов в определении автокорреляционной функции тот же самый интеграл делят еще на период повторения сигнала:

.

Так введенная корреляционная функция отличается следующими свойствами:

Значение корреляционной функции в нуле равно мощности сигнала ,

Размерность корреляционной функции равна квадрату размерности сигнала, например .

Для примера вычислим корреляционную функцию гармонического колебания :

Используя ряд тригонометрических преобразований, получим окончательно:

Таким образом, автокорреляционная функция гармонического колебания является косинусоидой с тем же периодом изменения, что и сам сигнал. При сдвигах, кратных периоду колебания, гармоника преобразуется в себя и АКФ принимает наибольшие значения, равные половине квадрата амплитуды. Сдвиги по времени, кратные половине периода колебания, равносильны смещению фазы на угол , при этом меняется знак колебаний, а АКФ принимает минимальное значение, отрицательное и равное половине квадрата амплитуды. Сдвиги, кратные четверти периода, переводят, например, синусоидальное колебание в косинусоидальное и наоборот. При этом АКФ обращается в нуль. Такие сигналы, находящиеся в квадратуре друг относительно друга, с точки зрения автокорреляционной функции оказываются совершенно не похожими друг на друга.

Важным является то, что в выражение для корреляционной функции сигнала не вошла его начальная фаза. Информация о фазе потерялась. Это означает, что по корреляционной функции сигнала нельзя восстановить сам сигнал. Отображение в противоположность отображению не является взаимно однозначным.

Если под механизмом генерирования сигналов понимать некоего демиурга, создающего сигнал по выбранной им корреляционной функции, то он смог бы создать целую совокупность сигналов (ансамбль сигналов), имеющих действительно одну и ту же корреляционную функцию, но отличающихся друг от друга фазовыми соотношениями.

Актом проявления сигналом своей свободной воли, независимой от воли создателя (возникновение отдельных реализаций некоторого случайного процесса),

Результатом постороннего насилия над сигналом (введение в сигнал измерительной информации, получаемой при проведении измерений какой либо физической величины).

Аналогичным образом обстоит дело с любым периодическим сигналом. Если периодический сигнал с основным периодом Т имеет амплитудный спектр и фазовый спектр , то корреляционная функция сигнала принимает следующий вид:

.

Уже в этих примерах проявляется некоторая связь между корреляционной функцией и спектральными свойствами сигнала. Подробнее об этих соотношениях речь пойдет в дальнейшем.

3.2 Взаимнокорреляционная функция (ВКФ).

В отличие от автокорреляционной функции взаимнокорреляционная функция определяет степень схожести копий двух различных сигналов x(t) и y(t), сдвинутых на время τ друг относительно друга:

Взаимнокорреляционная функция обладает следующими свойствами:

1. При τ = 0 взаимнокорреляционная функция принимает значение, равное взаимной энергии сигналов, то есть энергии их взаимодействия

.

2. При любом τ имеет место соотношение:

,

где - энергии сигналов.

3. Изменение знака временного сдвига равносильно взаимной перестановке сигналов:

.

4. С ростом τ взаимнокорреляционная функция хотя и не монотонно, но убывает до нуля

5. Значение взаимнокорреляционной функции в нуле ничем не выделяется среди других значений.

Для периодических сигналов понятие взаимнокорреляционной функции, как правило, вообще не используется.

Приборы для измерения значений автокорреляционной и взаимнокорреляционной функций называются коррелометрами или корреляторами. Коррелометры применяются, например, для решения следующих информационно-измерительных задач:

Статистический анализ электроэнцефалограмм и других результатов регистрации биопотенциалов,

Определение пространственных координат источника сигнала по величине временного сдвига, при котором достигается максимум ВКФ,

Выделение слабого сигнала на фоне сильных статических несвязанных помех,

Обнаружение и локализация каналов утечки информации путем определения корреляции между сигналами радиоэфира в помещении и за его пределами,

Автоматизированное обнаружение в ближней зоне, распознавание и поиск работающих радиоизлучающих подслушивающих устройств, включая мобильные телефоны, используемые как подслушивающие устройства,

Локализация мест утечек в трубопроводах на основании определения ВКФ двух сигналов акустического шума, вызываемого утечкой, в двух точках измерения, в которых расположены датчики на трубе.

3.3 Соотношения между корреляционными и спектральными функциями.

Как корреляционные, так и спектральные функции описывают внутреннюю структуру сигналов, их внутреннее строение. Поэтому можно ожидать, что между этими двумя способами описания сигналов существует некоторая взаимозависимость. Наличие такой связи Вы уже видели на примере периодических сигналов.

Взаимная корреляционная функция, как и любая другая функция времени, может быть подвергнута преобразованию Фурье:

Изменим порядок интегрирования:

Выражение в квадратных скобках можно было бы рассматривать как преобразование Фурье для сигнала y(t), но в показателе экспоненты не стоит знак минус. Это говорит о том, что внутренний интеграл дает нам выражение , комплексно сопряженное со спектральной функцией .

Но выражение не зависит от времени, поэтому его можно вынести за знак внешнего интеграла. Тогда внешний интеграл просто даст нам определение спектральной функции сигнала x(t). Окончательно имеем:

Это означает, что преобразование Фурье для взаимной корреляционной функции двух сигналов равно произведению их спектральных функций, одна из которых подвергнута комплексному сопряжению. Это произведение называется взаимным спектром сигналов:

Из полученного выражения следует важный вывод: если спектры сигналов x(t) и y(t) не перекрывают друг друга, то есть располагаются в различных диапазонах частот, то такие сигналы являются некоррелированными, независимыми друг от друга.

Если положить в приведенных формулах: x(t) = y(t), то получим выражение для преобразования Фурье автокорреляционной функции

Это означает, что автокорреляционная функция сигнала и квадрат модуля его спектральной функции связаны друг с другом посредством преобразования Фурье.

Функция называется энергетическим спектром сигнала . Энергетический спектр показывает, как общая энергия сигнала распределяется по частотам его отдельных гармонических составляющих.

3.4 Энергетические характеристики сигналов с частотной области

Взаимная корреляционная функция двух сигналов связана преобразованием Фурье с взаимным спектром сигналов, поэтому ее можно выразить в виде обратного преобразования Фурье от взаимного спектра:

.

Теперь подставим в эту цепочку равенств значение временного сдвига . В результате получим соотношение, которое определяет смысл равенства Релея :

,

то есть интеграл от произведения двух сигналов равен интегралу от произведения спектров этих сигналов, один из которых подвергнут операции комплексного сопряжения.

.

Это соотношение называется равенством Парсеваля .

Периодические сигналы обладают бесконечной энергией, но конечной мощностью. При их рассмотрении мы уже сталкивались с возможностью вычисления мощности периодического сигнала через сумму квадратов модулей коэффициентов его комплексного спектра:

.

Это соотношение обладает полной аналогией с равенством Парсеваля.